

Contents

Section 1: Introduction	5
Downtown Mesa	
What Makes a Downtown	
Transforming Downtown Mesa	
A Walkable Downtown	
Study Purpose, Vision, Goals, and Schedule	
Section 2: Barriers to Transforming Downtown (Existing Conditions)	15
Parking Inventory and Utilization	
Oversized Roadway Network	
Section 3: Transforming Downtown	25
Parking Regulation Reform	
Right-Sizing Roadway Network	
Wayfinding and Navigation	
Section 4: Implementation	40

Acknowledgments

Special thanks to the members of the community, stakeholders, and the Advisory Committee for their work in shaping the Downtown Mesa Micromobility and Parking Plan.

CITY OF MESA AND ADVISORY COMMITTEE

MARK FREEMAN MAYOR

RICH ADAMS

DISTRICT 1 COUNCIL MEMBER

JULIE SPILSBURY

DISTRICT 2 COUNCIL MEMBER

FRANCISCO HEREDIA

DISTRICT 3 COUNCIL MEMBER

JENN DUFF
DISTRICT 4 COUNCIL MEMBER

ALICIA GOFORTH

DISTRICT 5 COUNCIL MEMBER

SCOTT SOMERS
VICE MAYOR / DISTRICT 6 COUNCIL
MEMBER

Prepared for

SCOTT BUTLER CITY MANAGER

JIMMY CERRACCHIO
URBAN TRANSFORMATION

JEFF MCVAY

URBAN TRANSFORMATION

JEFFREY ROBBINS

URBAN TRANSFORMATION

ANTHONY RODRIGUEZ

URBAN TRANSFORMATION

TYE HODSON

DEVELOPMENT SERVICES

ERIK GUDERIAN TRANSPORTATION

DAVID CALLOWAY TRANSPORTATION

RYAN HUDSON TRANSPORTATION

ORLANDO OTERO
TRANSPORTATION

TERRY MADEKSZA

DOWNTOWN MESA ASSOCIATION

TONY GARVEY MESA LIBRARY

VANESSA GONZALEZ

MESA CONVENTION CENTER

Prepared by

Introduction

DOWNTOWN MESA

Mesa is one of the fastest-growing cities in the southwest. Since 2015, the Downtown population has surged by 22%, fueled by over \$1 billion in capital investment. The Downtown attracts an estimated 2.5 million visitors annually, and has accommodated over 1,500 new housing units in recent years. With this momentum, Mesa is emerging as a coveted destination to live, work, learn, and visit.

This rapid growth presents an urgent need to cultivate a clear and distinct sense of identity for Mesa, which can begin downtown. This identity must include a multimodal network to support local and citywide connections to Downtown Mesa, not only moving people about Mesa, but creating a sense of place that celebrates Downtown.

Downtown is the heart of every city. It serves as the common ground and centralized gathering space that unites residents, business owners, workers, tourists, and students alike and fosters connections. Downtown Mesa already boasts accessible amenities and dynamic social anchors, including Mesa Arts Center, Mesa Amphitheatre, Arizona State University, and Benedictine University with the Valley Metro light rail offering critical connections within Downtown and beyond. Thus, Downtown should continue to be the epicenter of Mesa.

downtown by the

annual visitors

new housing units since 2015

population growth since

To support the continuation of this transformation, making downtown more walkable, encouraging a park-once mentality, and relying on a safe and interesting walk or roll to get around downtown will be a key factor to success. This vision can be achieved through smart street design, parking regulations that match the parking patterns downtown, and micromobility options that embrace alternative modes for travel and connections to the existing public transportation network. For this report, micromobility is primarily referring to bicycles and scootersa. The connection to existing transit is also a feature, with proposed micromobility accommodations at existing bus stops and proposed expanded mobility hubs.

PURPOSE AND VISION

The City of Mesa conducted a Micromobility and Parking Study, resulting in this plan, to enhance transportation options as the downtown area grows. With recent investments attracting more residents and visitors, the City aims to evaluate and improve mobility for all. Currently home to 3,762 residents and nearly 20,000 workers, Downtown Mesa anticipates increased evening, nightlife, and weekend activities in the years ahead.

The Plan focuses on how to create a sustainable, multimodal transportation network and explore options for improved connectivity between surrounding neighborhoods and downtown businesses. The City aimed to create a dense, urban environment that incorporates improved walkability and shared parking solutions. The Plan also explored the best utilization of existing parking resources and anticipation of future parking needs.

WHAT MAKES A DOWNTOWN

A typical thriving downtown has a unique mix of assets: diverse housing options, retail, dining, offices, community services, educational and religious institutions, transportation services, and cultural experiences unavailable elsewhere in the City. Downtown is where essential services, accessible transportation options, and community life converge, regardless of trip purpose. Downtown Mesa is already attracting unprecedented volumes of residents, employees, and visitors. From the City Hall, which belongs to and serves the entire community, to the growing number of shops, restaurants, and offices, Downtown Mesa is progressively becoming a destination.

As Downtown's residential population expands, related amenities are more in demand: coffee shops, grocery stores, pharmacies, and other staples that support daily life. Developing a complete and livable Downtown means thinking holistically-not only about residents, but also about the many visitors drawn to Downtown Mesa for its unique attractions, events, and culture that serves both user groups.

Ultimately, a successful Downtown belongs to—and serves—everyone. Downtown Mesa must continue building upon its foundation as a civic, economic, and social hub that supports a diverse and increasing population. Crafting a more functional Downtown will bring new life to the greater area as a whole; Downtown must be prioritized in this exciting moment for the City.

In this Study's two public meetings and multiple stakeholder conversations with ASU, local developers, Bike Mesa, neighborhood associations, City Council, and community members, stakeholders cited nearby Gilbert and Chandler's downtown atmospheres as an inspiration, but not the limit, for what Mesa should strive for. These neighboring cities have cultivated desirable downtowns that draw people. From active street-level retail and dining options, to accessible public and private parking, to wide and pedestrian-friendly sidewalks, Gilbert and Chandler have the elements necessary for fostering a lively urban environment. Such conditions not only support daily convenience and mobility but also contribute to a broader sense of place that results in Downtown's perception as a place to arrive at, not just a place to pass through.

It is worth noting that many of these same features already exist in Mesa's Downtown, as depicted below and on the subsequent page. In fact, Mesa's access to the Valley Metro light rail, a free circulator bus, and many public art installations offers the city a unique sense of community connectivity that Gilbert and Chandler cannot provide. So, what about Mesa's Downtown is different? Why does Mesa's Downtown, despite the amenities and attractions it boasts, fail to stoke the same sense of place as its neighboring cities? The City has the framework for a great downtown, but the infrastructure needs to support the activity it wants.

According to Walkable Cities by Jeff Speck, polling among both millennials and "empty-nesters" indicates a strong preference for mixed-use neighborhoods in which people have options for getting around. Based on these indicators, the question is not whether people and businesses will be moving to and frequenting downtowns, but whether they will be flocking to Downtown Mesa specifically. The answer to that question will depend in part on whether Mesa provides a Downtown environment that makes it easy to park and explore the area by walking and multimodal activity.

DOWNTOWN FOR MESA COMMUNITY

DOWNTOWN FOR VISITORS

A WALKABLE DOWNTOWN MESA

Downtown Mesa's ability to further support an active downtown and future development benefits from its walkability. Walkability is the backbone of downtown connectivity because walking, biking, and transit are all mutually supportive. A walkable environment encourages people to walk around Downtown Mesa and participate in its cultural amenities, rather than parking close to their destination and leaving shortly thereafter.

Becoming a walkable downtown requires making walking or rolling downtown simultaneously useful, safe, comfortable, and interesting. People are far more likely to choose walking when these four conditions are met. The interesting walk relies on active storefronts (so people are not walking next to blank walls), public art, or friendly faces of neighbors and visitors. The useful walk is achieved when there is a reason to walk and a place to walk to such as grocery stores, coffee shops, retail, offices, or housing. Downtown Mesa is already working to improve the pedestrian experience along its streetscape, celebrating downtown with street art and bringing new businesses to Main Street. There is still room to grow in cultivating a useful and interesting downtown; the City can strive to diversify the mix of businesses and enliven more storefronts.

Currently, efforts to make Downtown Mesa's streetscape more stimulating are challenged by an uncomfortable environment created by wide roads, little shade, a hot climate, and other factors. Walking and forms of micromobility (bikes, scooters, micro-transit, etc.) are not an obvious mobility solution downtown, because the streets do not prioritize these users. Downtown vitality and street life needs people to walk and use micromobility, such as biking and scootering. These modes allow people to pop into a coffee shop, stop in to browse a store or outdoor market, or sit and enjoy a pocket park. To support this walkable culture, downtown communities must carefully balance the throughput of vehicles with a walkable, pedestrian-friendly street.

The streets in Downtown Mesa are wide, with unnecessarily wide travel and left-turn lanes, inefficiently using the available space between buildings. Coupled with one-to-two story buildings, the built environment feels like it is designed without consideration for pedestrians or cyclists. This condition is evident when comparing South Macdonald Street in Mesa and South Ashland, just east of Downtown.

South Macdonald is one of dozens of streets in Downtown Mesa that inadequately balances drivers and walkers. To create the active downtown the City of Mesa wants, the City must reimagine streets like South Macdonald to better prioritize pedestrian safety and comfort.

South Macdonald, depicted in Figure 1, is about 74 feet, curb-to-curb. The travel lanes are separated by a two-way left-turn lane, stretching the entire length of the corridor, despite there being nowhere to turn left into for up to 250 feet. Palm trees provide minimal shade, and the lowrise buildings cannot provide enough shadow to create a shady walking path for people walking on either side of the street. Lighting is configured to light the vehicle travel lanes rather than pedestrian pathways, and the angled parking along the street is underutilized.

For comparison, Mesa Drive is 57 feet wide, Broadway Road and University Drive are 63 feet wide, and Country Club Drive is 93 feet wide.

Figure 1. South Macdonald in Mesa, Arizona

Figure 2. South Ashland in Mesa, Arizona

In contrast, South Ashland in Figure 2 feels intentionally designed to seamlessly integrate cars and people. The buildings aprovide adequate shade along the sidewalks, and on-street parking creates a barrier of steel between moving cars and pedestrians. The narrower road width (25 feet) is appropriate for moving vehicles, but not wide enough for cars to drive faster than is needed for a downtown area, ultimately reducing the risk of a fatal crash should a car collide with a pedestrian.

By designing streets and public spaces that encourage useful, safe comfortable, and interesting walks, Mesa can enhance its street life, strengthen community connections among residents, workers, and visitors, and support a healthier, more economically vibrant Downtown. Mesa is well positioned to foster this transformation, but only if Downtown can provide a truly urban lifestyle that distinguishes it from its suburban counterparts. And central to that lifestyle—its very essence—is walkability.

STUDY CONTEXT

STUDY AREA

The study area (Figure 3) is defined by the boundaries of the Special Improvement District 228, bounded by University Drive, Broadway Road, Country Club Drive, and Mesa Drive. The study area encompasses some of Downtown Mesa's most popular attractions, accommodates nearly 20,000 daytime employees, and is the focus of continued large-scale public and private investments. The map below shows Downtown Mesa with the Valley Metro Light Rail stations. The study focused on connections within the study area, as well as between the study area and adjacent neighborhoods. Recommended roadway changes seek to connect the expanded micromobility network to the regional network, including the Sun Circle Trail, the Tempe Canal Path, Stadium Connector Pathway and many others, as well as the public transportation network consisting of light rail, bus routes, and the Downtown BUZZ Circulator.

Mesa GLENWOOD HISTORIC DISTRICT Mesa Convention Center Library AZ Museum of MAHONEY Municipal Court Study Area DT Buzz = Bus Routes Housing Authorityco ■ Bus Stop Light Rail Stop

Figure 3. Downtown Mesa Micromobility and Parking Study Area

STUDY GOALS

To achieve the outlined vision for Downtown Mesa and its supporting transportation network, the study identified eight goals that guided its process, stakeholder engagement, and ultimately, recommendations.

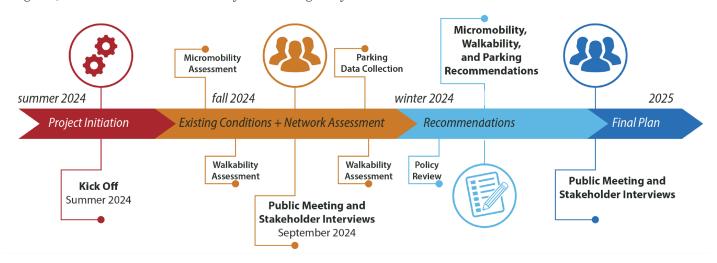
Foster a welcoming and thriving Downtown environment without displacing residents and businesses

Integrate king solutions that support and enrich Downtown activity

Recommend improvements to infrastructure to promote a multimodal Downtown, incorporating dynamic curbside access and activity

Ensure safety for all road users. including pedestrians, transit riders, and bicyclists

Identify upgrades to pedestrian amenities along Main Street to improve safety and comfort


Enhance cyclist, light rail, and bus facilities within the core study area to improve safety and comfort

STUDY SCHEDULE

The Project Team shared and confirmed these goals at a public meeting and series of stakeholder meetings in September 2024, during which members of the public and stakeholders voiced what they wanted from Downtown Mesa and how transportation could support such aspirations. Following the public meeting, existing conditions data was gathered and assessed to understand the existing conditions in Downtown Mesa, before the Project Team evaluated recommendations and how they may support the project vision, purpose, and goals.

In March 2025, the Project Team presented the draft recommendations at a public meeting followed by a presentation to the City Council at a study session. These recommendations for infrastructure and policy changes are the basis for this report.

Figure 4. Downtown Mesa Micromobility and Parking Study Area Schedule

BARRIERS TO TRANSFORMING DOWNTOWN

Existing Conditions

BARRIERS TO TRANSFORMING DOWNTOWN

To support a vibrant Downtown, Downtown Mesa needs to be walkable, as all downtown users are pedestrians, even those who arrive downtown by vehicle. A walkable downtown is reliant on creating safe, comfortable, interesting, and useful walks. More activity downtown (in form of more active businesses and on-street activities) will contribute to the walkability, but this activity is reliant on parking.

Downtown Mesa faces three primary transportation challenges in its journey to becoming the walkable mixed-use district Mesa wants. First, a perception of a lack of parking, due to improperly-regulated parking facilities, drives visitors away from downtown businesses. In many cases, a physical parking space may be available, but the existing regulatory framework bars drivers from parking in available spaces. Second, walking to parking facilities even just a few blocks away is uncomfortable, given the oversized roadway network, long block lengths, and local climate. Third, finding suitable parking facilities is not intuitive given a lack of wayfinding information and unclear existing signage.

This section of the report summarizes these barriers and the challenges, including a lack of micromobility accommodations, and opportunities they create for the Downtown Mesa Micromobility and Parking Study.

PERCEIVED LACK OF PARKING

Downtown Mesa has approximately 6,400 parking spaces, including regulated on-street parking, off-street public parking lots, private parking, and unregulated on-street parking - in addition to private parking for residential units. The City often hears frustrations about a lack of parking in the Downtown, with concerns from business owners that this parking "shortage" is driving customers away from their businesses.

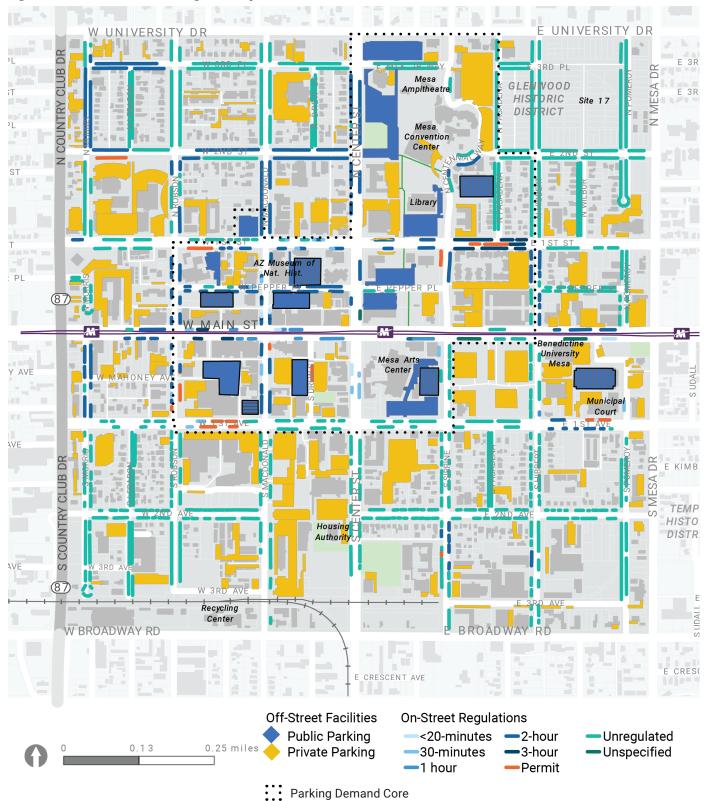
To understand this perception of a parking 'shortage' and the underlying problems that produce such perception, this Study completed a comprehensive parking study by inventorying the parking spaces by regulation (i.e. time restrictions, permit applicability, public or private acess), collecting utilization data about how the parking spaces are used throughout a typical weekday, and the lunchtime peak on a typical Saturday, and identifying ways to better match the parking demand and supply.

PARKING UTILIZATION STUDY

Parking data collection is generally scheduled for a "typical" weekday, traditionally Tuesday or Thursday, to understand the parking conditions on a workday. Counts occur in the morning, lunchtime rush, afternoon, and evening. Weekend counts can also add additional context regarding how the demand for parking changes from a weekday to a weekend. Some uses such as office buildings, have lower demand on weekends and entertainment and food and beverage may see higher demand on weekends. For this Study, parking was collected on Thursday, September 19, 2024 at 9 AM, 12 PM, 3 PM, and 6 PM, and Saturday, September 21, 2024 at noon.

A parking facility is considered "optimally utilized" when the facility is between 80 and 90 percent full, in other words, for every ten spaces, 1 to 2 spaces are available. This ratio is the ideal balance for parking infrastructure, as it ensures most parking spaces are in use, though there is still room to accommodate new arrivals. Figure 7 shows parking lots and on-street parking fields which are at optimal utilization in green, for the midday data collection period on Thursday September 19, 2024. Purple and blues indicate a parking facility or block of on-street parking has capacity for more parking, while orange shows the facility is "functionally full."

DOWNTOWN MESA PARKING PATTERNS


During the observation period, the parking system in Downtown Mesa is never more than 50% full. Thursday midday saw the most parked cars and the most locations that are "optimally utilized" (80-90% of spaces occupied) or "functionally full" (90% of spaces occupied). This condition is typical of a downtown at this time, because employees are at work, people are visiting restaurants for lunch, students are in class, and public facilities, such as the post office and library, are open. This activity results in more cars looking for parking. The parking in certain pockets, like in front of the library and the parking garage on North Centennial, are optimally utilized. At midday, the unrestricted parking lot at the corner of North MacDonald and West First Street is "functionally full," as are on-street parking spaces on Main Street, East First Street, and Pepper Place.

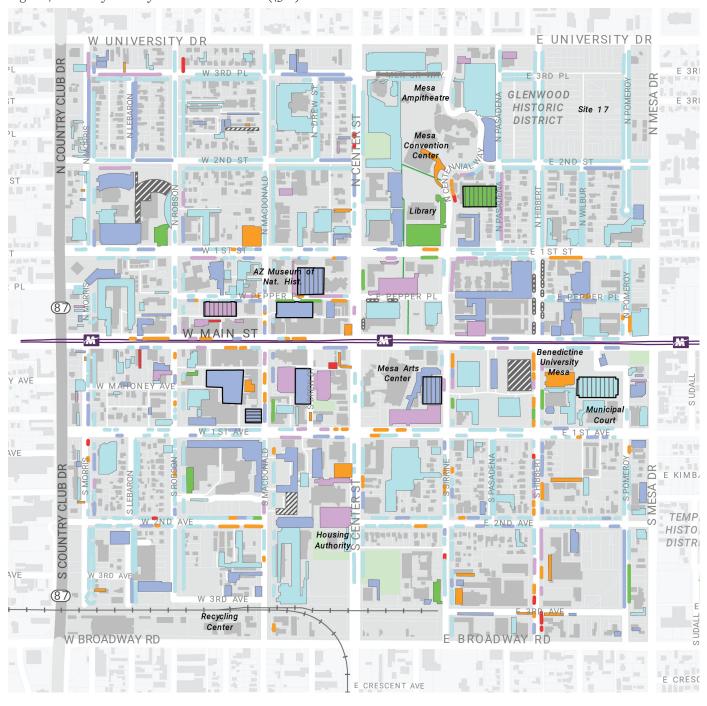
The heightened visitation and lack of parking where people are trying to park in certain areas contributes to the perception that there is a parking problem throughout all of Downtown Mesa. This assumption is mistaken; while the most-desired parking facilities are full, there are many other parking facilities with capacity nearby.

Figure 5.	Sentember	r 2024 Par	king Util	lization	Summarv

	Parking Demand Core			Downtown Study Area		
Time Period	Total ~5,300 spaces	On-Street ~900 spaces	Off-Street ~4,400 spaces	Total ~12,300 spaces	On-Street ~3,500 spaces	Off-Street ~8,800 spaces
Weekday Morning, 9 AM	40%	30%	41%	32%	24%	35%
Weekday Midday, 12 PM	43%	38%	44%	35%	27%	37%
Weekday Afternoon, 3 PM	36%	31%	37%	31%	25%	34%
Weekday Evening, 6 PM	27%	39%	25%	23%	27%	22%
Saturday Midday, 12 PM	34%	56%	32%			

Figure 6. Downtown Mesa Parking Inventory

The City of Mesa | 15


UNINTUITIVE NAVIGATION

The existing parking regulations may make sense to those familiar with Downtown Mesa, like an employee or resident, but the system is not intuitive for an infrequent or first-time visitor to Downtown Mesa. On-street parking regulations vary, even with a single block. Wayfinding to offstreet parking is limited, and what signs exist are not clear about who can park where.

ACTIVE CURBSIDE USE

There are no locations in Downtown Mesa that are reserved for short-term pick-up/drop-off, active loading, or reserved for non-parking curbside uses, such as food truck parking. Without dedicated locations for pick-up/drop-off and active loading, these activities occur in either the most-desired on-street spaces, or block other vehicles driving downtown by idling in travel lanes.

Figure 7. Weekday Midday - 12 PM Utilization (43%)

OVERSIZED ROADWAY NETWORK

The roads in Downtown Mesa are wide. Right-of-ways vary between 120 and 140 feet wide, with some curb-to-curb (pavement width) of 60, 80, and even 90 feet. 90 feet is wide for any urban roadway. Take Country Club Drive for example: the roadway is 93 feet wide, and is designed to primarily carry vehicles, rather than move and park both cars and bikes, while also fostering a welcoming downtown for people visiting the Downtown. In Downtown Mesa, this space is used by striping wide travel lanes, two-way left-turn lanes, and sometimes on-street parking, but the roadway elements are still too wide, creating superfluous space that creates an unsafe driving environment and a critically dangerous walking environment, according to the Walkable City Rules by Jeff Speck.

The only indicator for cars to drive slow in Downtown Mesa are the posted speed restrictions. Most of Downtown is signed at 25 miles per hour speed limit, with select streets marked at 30 and 35 miles per hour speed limits. Speed limits set the regulatory guidance for cars driving Downtown, but the road design has a greater impact on the actual speed of cars. The design speed is influenced by the width of travel lanes, the number of travel lanes, and the presence of friction, such as oncoming vehicles, parked cars, or the presence of bicycle lanes.

Aside from the built environment encouraging cars to drive fast in Downtown Mesa, the road network creates other challenges for a person walking, biking, or taking a scooter. Currently, there are few existing options for micromobility (as previously stated, for this report, micromobility is primarily refering to bicycles and scooters), meaning that most non-vehicular trips must be made on foot, or by personal bike or mobility device.

BICYCLE LEVEL OF TRAFFIC STRESS

Higher travel speeds and several lanes hinder a pedestrian's and cyclist's comfort. These conditions are found in places throughout Downtown Mesa. People walking and biking are not prioritized in the current roadway network. Figure 8 shows the Bicycle Level of Traffic Stress (BLTS) in Downtown Mesa calculated as part of this study (methodology included in the appendix). BLTS is an industry metric that assesses how bicycle riders may feel when navigating downtown. BLTS is impacted by vehicle speed, number of lanes, and the level of protection a bicycle has on a given block. Note, roads closed for access (such as those on Site 17) were not evaluated.

First Avenue has protected bicycle lanes, where bikes have a dedicated lane behind parked cars, separating them from fast-moving vehicles. This condition will always result in a BLTS of 1, indicating a rider of any confidence will be comfortable on this road. Residential roads, such as Third Place and North Lebanon, have no dedicated bicycle facility, but the reduced curb-to-curb pavement width and low volume of slow cars creates a more comfortable environment. These roadways receive a BLTS of 2. Where no protection is available, roads receive a BLTS of 3 or 4. indicating they are not comfortable for bikers without a high-confidence level.

Figure 8. Downtown Mesa Bicycle Level of Traffic Stress Rid days a daily of E 3R E 3RD PL Mesa GLENWOOD Ampitheatre HISTORIC Site 17 DISTRICT Mesa et at its Convention Center W 2ND ST 则 明 4 阿 B B B A 200 198 1111/ 1 Library TE 5 AZ Museum of <mark>N</mark>at. Hist. PL PEPPER PL E PEP PER PL 87 W MAIN ST M Benedictine University Mesa Arts Y AVE w Mesa W MAHONEY AVE L Center Municipal Court ٩VE ÷ E KIMB. market sell h ill TEMP W 2ND AVE HISTO Housing o DISTR Authority 0 ٩VE (87) E 3RD AVE Recycling Center E CRES E CRESCENT AVE Level 1 - All Riders Level 2 - Cautious Riders

Level 3 - Confident Riders

Level 4 - Highly Confident Riders Only

0.13

0.25 miles


BLOCK SIZES AND CROSSWALKS

The wide curb-to-curb distance characteristic of many of Downtown Mesa's streets increase the amount of pavement a person needs to traverse when crossing the street, putting pedestrians in a vulnerable position for a prolonged period of time. In some parts of Downtown Mesa, a person may be crossing a street for up to 30 seconds. 30 seconds may not feel like a long time, and it is not if a person can be confident they are protected on a sidewalk. Yet, when in the middle of a road designed to make cars feel like they are on a highway (wide curb-to-curb distances and wide travel lanes), the 30 seconds are stressful.

In addition to wide pavement, Downtown Mesa is designed with long block structures. A typical downtown block is typically between 200 and 300 feet. In Downtown Mesa, however, the average block is between 600 and 700 feet, with some over 900 feet long. This long block structure means people are walking up to 5 minutes to go one block. While this is not an ideal walk, the real challenge is the lack of shade or activity along the blocks, making the walk uninteresting and uncomfortable. In Mesa, a 5-minute walk feels much longer and more of a barrier due to the current conditions. Another barrier is the limited pedestrian navigation, connecting the off-street parking facilities to the activity centers along First Street and Main Street.

Figure 9 shows the block lengths in Downtown Mesa, as well as the crosswalk locations - and where crosswalks do not currently exist. Crosswalks are marked as missing if they are not clearly marked. If a crossing is only marked on one leg, that leg is shown on the graphic.

As seen, intersections without crosswalk markings are prevalent in Downtown Mesa. These missing or unmarked crosswalks do not welcome pedestrian crossings, and do not indicate to drivers that a pedestrian may cross at the intersection - even if the crossing is legal. Crosswalks should be painted and maintained at all intersections with accompanying pedestrian crossing signage, as you would paint and maintain stop bars or centerlines. Doing so indicates for pedestrians where to cross, as supported by the Manual for Uniform Traffic Control Devices.

TRANSFORMING DOWNTOWN Recommendations

RECOMMENDATIONS

Transforming Downtown Mesa into the accessible downtown needed to support a thriving Main Street is not as challenging as one may think, despite the barriers described in the previous section. A walkable downtown will have a positive impact on downtown businesses, downtown residents, and visitors.

Downtown Mesa has the skeleton for a great downtown transportation network, with existing parking facilities set back from Main Street, the Valley Metro light-rail connecting Mesa to downtown Phoenix, and existing curb space to incorporate parking, bike lanes for micromobility, and sufficient roadway to maintain vehicle throughput. The sidewalks on Main Street are wide enough to expand wayfinding for pedestrians, while preserving space for people to walk, street furniture, and outdoor dining. Landscaping zones between the sidewalk and curb are wide enough for new trees and green infrastructure opportunities such as those in the City's Low Impact Development Toolkit.

The City has already made improvements to Downtown, such as planting trees on Main Street and several north-south connecting streets. The most recent Main Street reconstruction incorporated street trees, benches, and public art. The Lewis Pathway connects the Convention Center and Amphitheatre to the Light Rail on Main Street. All these improvements are a great start to making a navigable downtown.

This chapter focuses on the transportation recommendations that will support bringing more life and activity to Downtown Mesa:

- Parking Reforms:
 - Reframing how drivers park Downtown
 - Modifying the permit system
- Right Sizing the Road Network
 - Removal of unnecessary turn lanes
 - Lane width
 - Increasing the person throughput with more micromobility options available
- Improving Navigation in Downtown Mesa

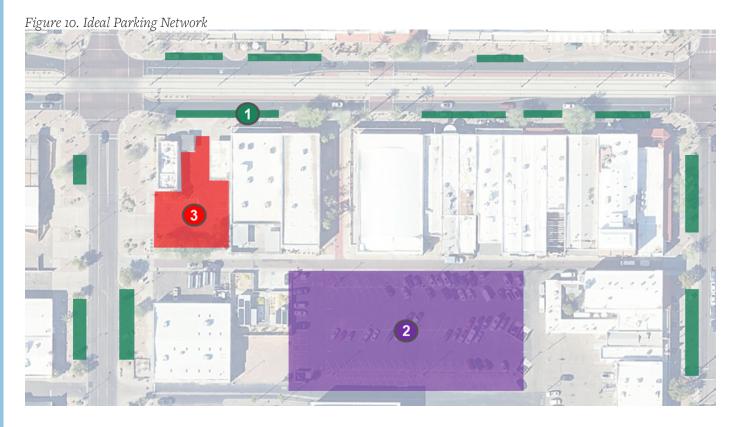
These recommendations will shape a Downtown with person-sized streets and ample parking opportunities for short, medium, and long-term visits. There will be more ways to get around Downtown Mesa.

All recommendations are considered for short-term, mid-term, or long-term implementation. These distinctions are indicated in the recommendation. Some recommendations will require changes to existing curb layouts, infrastructure, and other capital improvements.

PARKING REFORMS

The parking utilization study revealed that the parking supply in Downtown Mesa is not the problem, but rather the location of public parking and the way this supply is managed and regulated. With visitors unable to find parking, businesses are missing out on potential customers and Downtown Mesa is not capturing all the possible activity. While creating a multimodal, walkable downtown is the ultimate goal, cars will continue to be a primary means of bringing visitors from elsewhere in the City of Mesa, the Greater Phoenix region, and beyond to Downtown Mesa. The parking system needs to be clear for anyone coming to Mesa. Drivers should easily determine where they can and should park and for how long. This section outlines the parking regulation recommendations for Downtown Mesa.

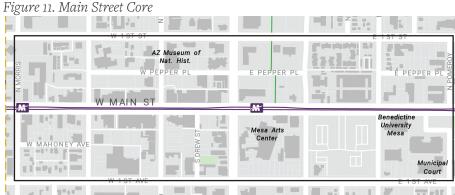
PARKING NETWORK FRAMEWORK


The recommendations will differentiate between three parking facility types and three parking users.

PARKING FACILITY TYPES (FIGURE 10)

- On-Street, Public Parking (1)
- Off-Street, Public Parking (2)
- Off-Street, Private Parking (3)

PARKING USERS


- Short-Term Visitors
- Long-Term, Permit Holders
- Long-Term Visitors

SIMPLIFY ON-STREET PARKING RECOMMENDATIONS (SHORT-TERM)

On-street parking is often the preferred parking supply for any user but should be reserved for short-term parking to encourage high-turnover. Preserving the most desired parking spaces for short-term visits, such as a person stopping into a coffee shop, convenience store, or picking up-dry cleaning, will make these visits efficient, a necessity for customers to frequently visit and patronize a local business.

To keep on-street parking universally accessible for visitors, parking should be restricted to 3-hour parking only within the "Main Street Core," which includes all streets between First Street and First Avenue, shown in Figure 11. Main Street will be restricted to 2-hour parking. The time restrictions should be in effect

weekdays between 8 am and 5 pm, when parking enforcement is in effect.

Enforcement officers should use license-plate reader technology to identify if a vehicle has been parked for longer than the 3-hour limit anywhere within this area. If a car is parked for more than the permitted time, or reparks in the zone after their time expires, a violation ticket will be issued. Parking violation tickets should include information about where long-term parking is available and how to purchase a day pass.

Business owners and employees who are hesitant to this change may continue to park and relocate their car throughout the day. The Office of Urban Transformation and DMA should have conversations with business owners, explaining the change in parking regulations, and the benefit to their business, as well as nearby parking facilities (either outside of the "Main Street Core" or in an off-street parking lot) that could accommodate employee schedules. Benefits of a 3-hour time limit by user are shown in Figure 12.

Figure 12. Benefits of On-Street Parking Time Limits by User

User Type	Benefit of 3-Hour Parking for On-Street Parking
Customers	Park in more locations – more parking available where desired
	Spend time in Downtown Mesa without feeling impeded to move car
	Less incursion into existing use-specific parking (e.g. library lot)
Merchants	Ensure customers have parking access where they desire it
	Attract more customers with longer duration visits to Downtown Mesa
Enforcement Officers	Simplified enforcement under consistent time limits

EXPAND ACCESS TO OFF-STREET PUBLIC PARKING LOTS (SHORT-TERM)

If on-street parking is best suited for those parking in the short-term (like visitors), then off-street parking is best suited for drivers who need to park for extended periods of time. Off-street public parking facilities are primarily located just off Main Street, Pepper Place, and First Street. These facilities can be managed to directly meet the needs of employees, residents, and long-term visitors.

The i.d.e.a. Museum, Mesa Amphitheatre, and Mesa Arts Center lots, are not intuitively available for visitor parking. These parking lots are currently underutilized, as their associated land uses do not require the around-the-clock parking supply they offer. These parking facilities should become available and signed for public use and only reserved when an event necessitates preserving the parking. Figure 13 shows the proposed changes to regulations for off-street parking facilities, what type of user groups should use the facility, and the available off-street parking inventory.

SHARED PARKING AGREEMENTS WITH PRIVATE PARKING LOTS (SHORT-TERM) Off-street private parking is only accessible to tenants or property owners. To increase clarity in the parking system (where that all parking in the Downtown is available for public use), Downtown Mesa should establish shared parking agreements with private parking owners. Parking ownership may still be disparate but the City would take the lead in working with private parking owners to develop a coordinated system with various levels of incentives to participate partially or in full, including offering different levels of in-kind services and improvements. Once operational, parking areas are branded and signage is provided to note the regulation (visitor parking, reserved parking, etc.).

REDUCING PRIVATE PARKING IN DOWNTOWN (LONG-TERM) The expansion of private parking in Downtown should be discouraged through eliminating parking minimums for Downtown commercial properties, rather allowing the commercial properties to use the existing public parking.

PARKING PERMIT SYSTEM REFORM (SHORT-TERM)

The parking permit system is a significant revenue source for the City of Mesa. The existing permit parking system assigns users a parking facility with weekday parking access between 8 am and 5 pm for a monthly fee. A daily permit can be purchased by visiting the DMA office, although this is not widely advertised. The parking regulation recommendations remove the priority the current permit system awards permit holders, as off-street parking access is expanded for all users. To continue accruing revenue, the study recommends the following changes to the permits.

DAILY PERMITS A formal day-pass can be made more accessible to Downtown Mesa via pay-byphone technology, allowing employees or visitors to park beyond the free 3-hour parking limit for on-street and off-street parking. This permit does not permit parking in the Eco Mesa Garage, the Pepper Place Garage, or on Main Street.

MONTHLY PERMITS For those users that want extended parking in the Orange Lot, Green Lot, Gold Lot, Eco Mesa Garage, or the Pepper Place Garage, a monthly permit can be purchased for these facilities. This permit allows 24/7 access to these parking facilities, but does not permit on-street parking beyond the free 3-hour limit (2-hour limit on Main Street).

Figure 13. Off-Street Parking Supply Regulation

Parking Facility	Inventory	Proposed Changes / Parking Users
Pepper Place Garage	513	Monthy permits on upper floors; 3-hour limit on first floor
Centennial Garage	202	No Restrictions (outside core)
MacDonald Lot	79	3-hour parking
Eco Mesa Garage	76	Monthy permits on upper floors; 3-hour limit on first floor
Green Lot	104	Monthly permit parking OR 3-hour parking
Orange Lot	152	Monthly permit parking OR 3-hour parking
Gold Lot	100	Monthly permit parking OR 3-hour parking
Sirrine Garage	334	3-hour parking
Pomeroy Garage	349	3-hour parking
I.D.E.A Museum Lot	55	Use for public parking, 3-hour parking; can reserve for events
Mesa Amphitheatre Lot	273	Use for public parking, no restrictions (outside core); can reserve for events
Mesa Arts Center Lot	145	Use for public parking, 3-hour parking; can reserve for events
TOTAL	2,506	

MONITOR PERMIT DEMAND AND ADJUST AS NEEDED (MID/LONG-TERM)

The City of Mesa should monitor the permit sales over time to determine if other lots should be expanded for the monthly permit system. The number of spaces in lots reserved for monthly permit holders should reflect the permit sales.

PRICE PARKING (LONG-TERM)

The best way to encourage short-term parking is to remove time limits and allow parkers to choose how long they want to park by paying for the parking space. As described, on-street parking creates value to the downtown businesses, increasing the opportunity for short-term visits. Based on the existing parking demand, pricing some of the parking will be ineffective and encourage drivers to look elsewhere in the system for free parking. The paid parking system could even discourage trips of any length to Downtown Mesa.

As Downtown Mesa sees more activity and higher parking demand of 85% occupancy within the "Main Street Core" or more at peak hours, priced parking can be reevaluated. The revenue collected through pricing parking can contribute to a parking benefit district. A parking benefit district generates revenues through parking fees (meter/kiosk payments or permits) and redistributes them back into the locations where revenues originated. Revenues are co-managed by non-profit groups (like the Downtown Mesa Association). This money is often used to take care of the parking system and improve the downtown area. Projects may include fixing streets and sidewalks, adding lights and benches, planting trees, and even helping businesses improve their storefronts.

RIGHT SIZE ROAD NETWORK

Right-sizing the road network in Downtown Mesa is the first step in creating a walkable downtown. It may sound counterintuitive to focus on the roads where cars drive when thinking about people walking, but by right-sizing the roads, space can be freed up for other uses. Rather than Mesa's streets only providing room for cars driving or parking, and people walking on narrow sidewalks, they can offer micromobility lanes that are protected from cars, parking with buffers that protect people from stepping into moving cars or bicycle traffic when exiting their cars, and appropriately-sized driving lanes that encourage cars to drive the speed limit.

This series of recommendations focuses on matching the width of street design elements to industry standards (shown on page 29) and creating options for multimodal travel with the reclaimed space. These recommendations strive to align the road capacity with the existing demand and preserve the ability for emergency vehicles to navigate the road network in emergency situations. The guidance is adapted for Downtown Mesa from the guidance found in Walkable City and Walkable City Rules (Jeff Speck of Speck Dempsey).

DRIVING LANES AND ACCOMMODATING LEFT TURNS

The first step in right-sizing the road network is removing unnecessary turn lanes. Streets with unnecessary additional driving lanes make the street feel more like an arterial, encouraging cars to drive at higher speeds or shift lanes unpredictably, putting all roadway users, whether in a car, on a bike, or walking, at risk. To avoid these design conditions that conflict with the desired feel of a downtown environment. Mesa's roads should accommodate all vehicles, while not providing left turn lanes in locations unless volumes warrant the lane. An added benefit is fewer travel lanes for a pedestrian to cross, whether at an intersection or a mid-block crosswalk.

The busiest streets in Downtown Mesa (aside from Broadway Road, Country Club Drive, Mesa Drive, and University Drive), have an average annual daily traffic volume of about 8,000 cars. This falls well within the volume limit for roadways with one travel lane in either direction. Walkable City Rules indicates a typical two-way road with one lane in either direction can accommodate up

WHY SPEED MATTERS

The recommendations for right-sizing the Downtown Mesa road network create space for micromobility and new parking spaces, but they also slow vehicles. While this is not a safety study, and Downtown Mesa has not seen a rapid increase in crashes, the Study would be remiss to not discuss speed and crashes.

The speed limit on Center Street, East Main Street, First Avenue, and South MacDonald Street (between First Avenue and Broadway) is between 30 and 35 miles per hour. At those speeds, in the circumstance of a crash, there is a 5% chance of a driver or passenger experiencing a severe injury or fatality from that driving speed. If a car strikes a pedestrian, there is a 50% likelihood of the person experiencing a severe injury or fatality. It's counterproductive to plan for a multimodal and walkable downtown, without addressing the roads that encourage cars to drive fast and discourage walking in the first place.

to approximately 10,000 cars per day, and adding a left-turn pocket for left-turns at intersections increases the capacity to over 15,000 cars per day.

ACCOMMODATING LEFT TURNS As described in Section 1, Downtown Mesa has a two-way left-turn lane on several primary roads, providing turning vehicles a place to wait before turning into a driveway, parking lot, or at an intersection. Two-way left-turn lanes also create a median effect for drivers, distancing them from oncoming traffic. Research in Walkable City Rules shows removing this natural friction, drivers will instinctively drive faster. When a left-turn is needed, a left-turn pocket can be provided.

LANE WIDTH (SHORT-TERM / MID-TERM WITH RESTRIPING)

DRIVING LANES The width of driving lanes corresponds to the speed at which cars drive. A typical American highway has 12-foot-wide lanes, which can support up to 70 miles per hour speeds, compared to an urban lane, which can be as narrow as 10-feet wide, that supports speeds up to 45 miles per hour, per the American Association of State Highway and Transportation Officials. Wider travel lanes make drivers drive fast with the absence of friction from oncoming or adjacent cars. Drivers feel this and instinctively understand the connection between lane width and driving speed. Drivers speed up when presented with wider lanes, even in downtowns. Lane width is one factor that influences design speed, or the speed that a street has been designed to support.

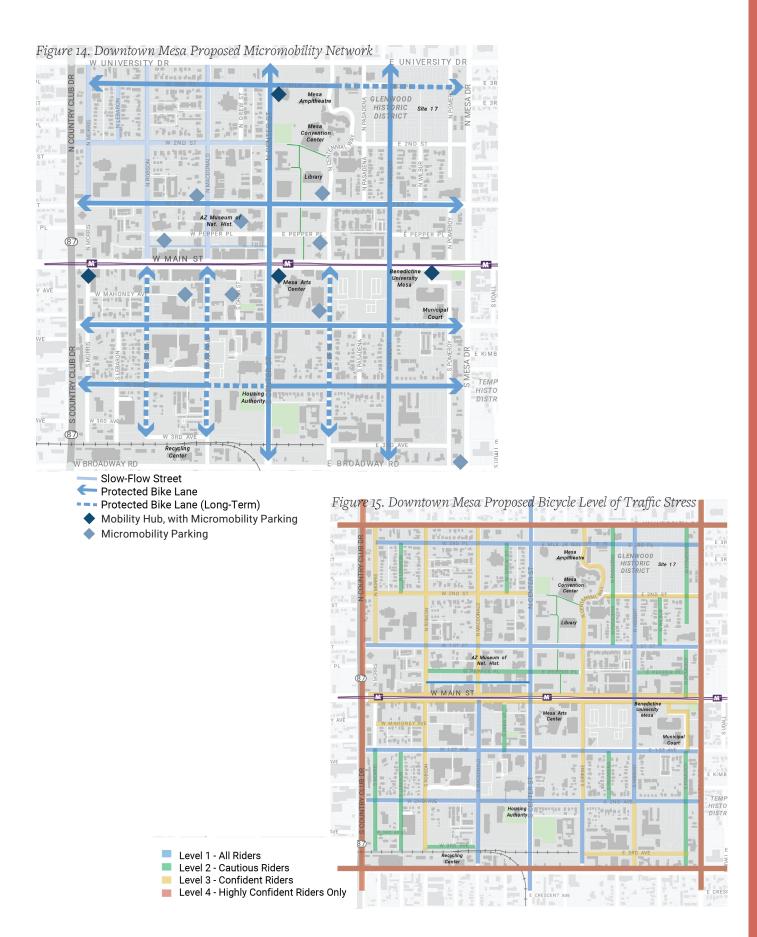
In Downtown Mesa, travel lane widths vary between 10 feet on University Drive, Main Street, and East First Avenue (among others) and 11 feet on Country Club Drive and most two-way left-turn lanes. There are also select locations where travel lanes are up to 22 feet wide on secondary roads such as East Second Avenue. Understanding that wider lanes can encourage higher travel speeds, there should be no reason East Second Avenue and others in Downtown Mesa have lanes up to 22 feet wide if Country Club Drive operates with 11-foot lanes.

This Study recommends creating new opportunities for micromodal travel on Downtown Mesa's streets, as well as creating new parking spaces to support downtown activity. Along segments where a travel lane is adjacent to angled parking, the travel lane should be 12 feet wide to accommodate the space needed for maneuvering into the parking space. In all other circumstances, a 10-foot travel lane should be the standard. By right-sizing the travel lanes, vehicles are more likely to drive the intended speed, and space will be available for an intentional micromobility network.

MICROMOBILITY LANES Micromobility lanes (also referred to as bike lanes) are typically four feet to six feet wide, with a clear zone between vertical elements to fulfill local maintenance requirements (such as the width needed for a street sweeper). In Mesa, the street sweeper needs an 8-foot zone between vertical obstructions. 8 feet is a wide bicycle lane and with enough room to drive a small car. Instead of using the 8 feet for the bicycle lane, the clear zone can be accommodated by a 5-foot bicycle lane and a 2-foot to 3-foot buffer, depending on the space available (while maintaining 8-feet between the curb and any vertical element; 18-inches can be considered a minimum width in constrained conditions). This buffer serves three purposes: 1) to preserve space necessary for the street sweeper, 2) to provide a buffer between bicycles or scooters and moving vehicles, and 3) to provide space for people exiting a car, without immediately stepping into a bicycle lane.

RECONSTRUCT ROADWAYS (LONG TERM) In a future scenario when reconstructing the roadway is an option, whether for utility maintenance or a private development, the curb-to-curb width can be narrowed. In this situation when the curb can be relocated, angled parking can be reverted to parallel parking. The reclaimed space can be used to create wider sidewalks. sidewalk level bicycle facilities, plant trees, or construct bumpouts at intersections to narrow crosswalks. To ensure this future, trees should be considered for planting at intervals that are appropriate for their canopy spread that will provide shade on sidewalks and on bike lanes while meeting clearance, city code requirements, and sight visibility. Species should be desert adapted, approved for use in ROW and the Arizona Municipal Water Users low water use plant list.

CENTERLINES (LONG-TERM) With the long-term reconstruction, Downtown streets should be designed without centerlines, except at intersections. Removing centerlines has been proven to effectively lowered driving speeds by an average of 7 mph, per Walkable City Rules. Like wide lanes, centerlines give drivers confidence that they have a clear path and may encourage speeding.


As centerlines can be an important indicator that a street is two-way rather than oneway, they act as an indicator to drivers in Downtown Mesa. As Downtown is treated different than other parts of Mesa and drivers are accoustomed to the bike lanes, on-street parking, and removal of two-way left-turn lanes, the City should remove the striping except for 25 feet of centerline approaching each intersection to avoid confusion for turning drivers.

WHY TREES MATTER

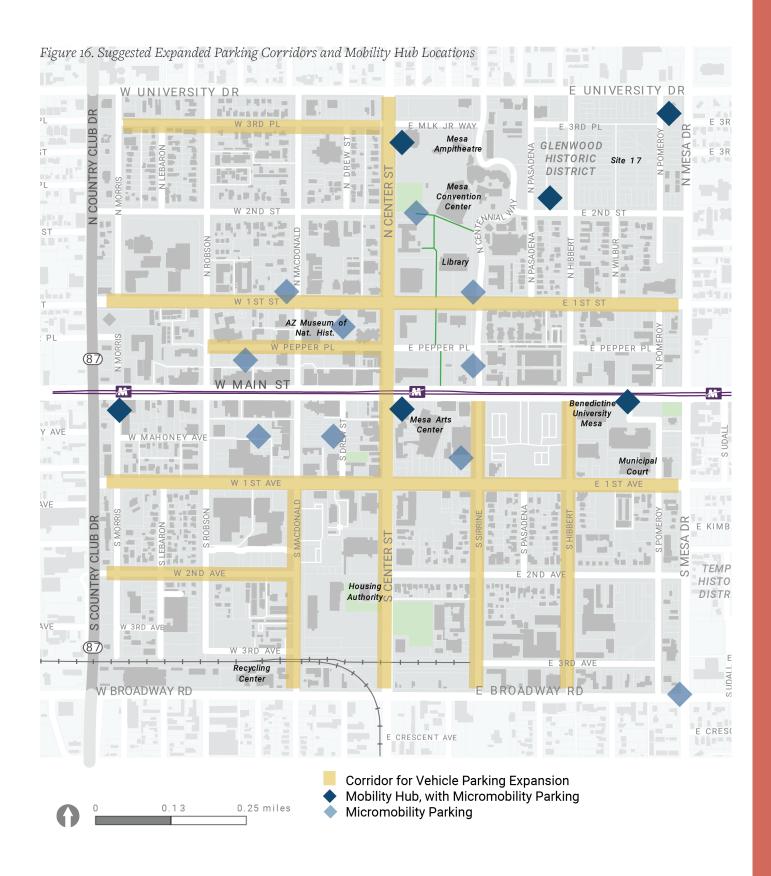
Mesa's hot climate poses uncomfortable walking conditions for residents and visitors. Street trees along Downtown Mesa's roads can critically reduce temperatures Downtown. Rather than an optional amenity or a luxury, street trees constitute an absolutely essential component of street design, as important to a street's public function as its driving lanes. In addition to providing shade, they are evidenced to perform the following functions:

- Protect pedestrians from moving traffic;
- Make walking and biking tolerable on hot days and absorb dangerous UV rays;
- · Reduce urban heat islands by as much as 22 degrees and lower regional temperatures generally;
- Absorb CO2 and other climate gases, as well as other airborne pollutants and absorb tremendous amounts of stormwater, reducing both property damage and sewage overflows during storm events;
- Provide ecological benefits by supplying food and shelter for insects, birds and other wildlife, increasing the biodiversity of the urban habitat
- Contribute to social and health benefits by improving mental health, reducing stress, encouraging outdoor activity, connecting to nature and improving community well-being;
- Reduce urban noise pollution;
- Improve property values and revenues for local businesses: and
- Lengthen the lifespan of roadways by reducing solar damage to asphalt.

CURBS (LONG-TERM) A standard 6-inch vertical curb should be established across Downtown Mesa. Use of rollover curbs should be minimized in approved public works lists, as vertical curbs are generally safer.

OPPORTUNITIES FOR RIGHT-SIZED STREETS

By removing unnecessary turn lanes and using industry standard travel lane widths, a road can increase its person capacity by accommodating more people walking, rolling, biking, or scootering, while still maintaining the same number of cars and emergency vehicles.


MICROMOBILITY NETWORK (SHORT-TERM / MID-TERM) One way to reuse the right-of-way after right-sizing the travel lanes is to integrate a micromobility network. As described in Section 2, the existing bicycle network in Downtown Mesa is limited, and riding a bicycle or scooter in general purpose lanes is not ideal, given the speed and volume of cars on the road. Formalizing a micromobility network will improve the bicycle level of traffic stress downtown, encouraging more bicycle and scooter users and reducing opportunities for conflict between micromobility users and vehicles or transit, as depicted in Figure 14. North-south and east-west micromobility connections are provided in the proposed micromobility network shown in Figure 15.

VEHICLE PARKING (SHORT-TERM / MID-TERM) Beyond a micromobility network, another street design element that can increase the comfort of a street and the walkability of a downtown is adding onstreet parking. Curb parking can provide a physical buffer between the roadway and the sidewalk that is necessary if people walking are to feel fully at ease. It also causes people driving to slow down out of concern for possible conflicts with cars entering or exiting parking spaces.

The parking utilization analysis showed an ample parking supply in Downtown Mesa, but public perception continued to indicate a problem with locating parking. Increasing the on-street parking supply will help drivers find parking quickly, enabling them to get out of their car and walk in Downtown Mesa.

The width of many streets in Downtown Mesa allows for angled parking, rather than just parallel parking. Angled parking, as opposed to parallel is often preferred for drivers and passengers because it protects them from moving traffic when entering or exiting their vehicle. They also help to protect cyclists riding in micromobility lanes by eliminating the possibility of a door swinging in their lane of travel.

Figure 16 shows the locations where angled parking can be created. The result increases onstreet parking counts in Downtown Mesa by up to 25%. Focusing on the core of Downtown Mesa, where parking is in high demand, the streetscape changes can increase parking by over 250 spaces. Between First Street and First Avenue, the parking supply can be increased from 1,150 spaces to 1,400 spaces (including First Street and First Avenue). This increase can be planned through a restriping effort, but will also require installing parking stops and detailing how parking spaces interact with driveways and intersections, among other considerations.

BIKE AND SCOOTER PARKING (SHORT-TERM) Along with expanding the micromobility network in Downtown Mesa, there should be an equal effort to expand Downtown's micromobility parking provision in the form of bicycle racks, dedicated scooter parking, and scooter and reintroduced bikeshare docking stations (as the new micromobility network may encourage biking and scootering in Downtown Mesa). As with the few bike lanes, the existing bicycle parking is limited in Downtown Mesa. Creating more parking for bicycles and scooters across Downtown Mesa will reinforce the importance of micromobility users to the City and increase the convenience of nonvehicular travel.

Micromobility parking should be located in proximity to downtown commercial destinations, vehicle parking facilities, and transit stops (light rail and bus) to make connections between modes of transportation seamless.

Shared mobility services are missing from the City of Mesa, which creates a gap in the options available for people looking to get to and around Downtown Mesa other than by automobile. To address the first-mile/last-mile gap, the City can proactively creating additional bike corrals at public transit stops. This may critically signify the City's investment in micromobility and help incentivize bike share and scooter operators to consider relaunching in Mesa.

Micromobility parking can also function as a mobility hub, where connections between modes are encouraged. Mobility hubs can take many forms, including locating bike parking near bus shelters with information about transportation options or investing in a structure to act as a central mobility space in Downtown Mesa. An example of this can be found in Tempe, where the Tempe Bicycle Cellar is an impressive model, with secure bike parking, bathrooms, changing rooms, lockers, and showers. End-of-trip facilities are key for encouraging active transportation.

PICK-UP / DROP-OFF (SHORT-TERM) Designating curb space for pick-up/drop-off (PUDO) areas, allowing short-term loading for ride-share, taxi cab, or personal vehicles, provides clear, organized areas for safe pick-up and drop-off, minimizing disruptions to traffic and pedestrians. Amenities like benches and street trees can further enhance such spaces. These formalized PUDO spaces can be coordinated with the ride-share companies to geofence PUDO areas, consolidating this activity to designated locations in Downtown Mesa. PUDO areas should be provided near mobility hub locations, shown in Figure 16.

BUS STOPS (MID-TERM) Downtown Mesa has six (6) bus routes, including the Buzz, and the Valley Metro Light Rail to connect transit riders to their destinations.

Bus stops should support bus riders by providing high-quality features, including shelters with adequate shade, schedule information for the buses and nearby light rail connections, and wayfinding information to help navigate Downtown Mesa. Bus stops can also be a location for micromobility parking, as decribed above to provide first/last mile connections.

WAYFINDING AND IMPROVED NAVIGATION

REPLACE UNWARRANTED SIGNALS WITH ALL WAY STOP SIGNS (MID-TERM)

For many years, cities inserted traffic signals at their intersections as a matter of pride, according to Walkable City and Walkable City Rules (Jeff Speck - Speck Dempsey) with the understanding that a larger number of signals meant that a place was more modern and cosmopolitan. Recently, that dynamic has begun to change, as concerns about road safety have caused many to question whether signals are the appropriate solution for intersections experiencing moderate traffic. Research now suggests that all-way stop signs, which require motorists to approach each intersection as a negotiation, turn out to be much safer than signals.

Traditionally, cars enter stop-controlled intersections at lower speeds, as cars are not rushing through intersections to "beat the light." There is considerable eye contact among users. While drivers do have to slow down, they never have to wait for more than a few moments to get through, and people walking and biking are generally waved through first.

One great byproduct of converting signals to stops is the associated financial savings: stop signs are much cheaper to install and maintain than signals, with no bulbs to replace, signal poles to upgrade, electric wires to replace, and no electricity costs. Compared to a network of signals, a network of stop signs results in a drive punctuated by interruptions. These pauses are all guite brief and the driver does not have to sit and wait for a light to turn from red to green. If waits at signalized intersections are 30 seconds or longer, this wait time can add up to several minutes wasted.

This Study recommends evaluating six downtown signalized intersections for conversion to allway stops to slow vehicles at the following intersections: (1) West First Street at North Robson, (2) West First Street at North MacDonald, (3) East First Street at Centennial Way, (4) West Second Avenue at South MacDonald, (5) East First Avenue at South Sirrine, and (6) East First Avenue at South Hibbert. Note, converting signals to all-way stops can involve capital costs of approximately \$200,000 per intersection. While the City identifies funding sources, in the short term, the City should consider flashing red signals to treat the intersection as a as a stop sign.

PUSH BUTTONS AND SIGNAL CYCLE LENGTHS (MID-TERM / LONG-TERM)

In their most common form, push-button-enabled walk signals initiate a walk sign only when pushed, typically after a considerable wait. These signals present several advantages. They maximize the flow of automobiles and minimize the likelihood that an emergency vehicle will have to wait for an intersection to clear as vehicles wait for a green light.

In theory, the improved recalled pedestrian phase response times enabled by pedestrian pushbuttons improve public safety and save lives. But this reasoning only holds if few pedestrians jaywalk. The reality is unfortunately guite different, as the long waits caused by most push-button systems generate a tremendous amount of jaywalking. This jaywalking is likely to create more injuries and deaths than those prevented by slightly quicker response times.

Unlike push-buttons, concurrent signalization when pedestrians cross while parallel cars have a

green light puts pedestrians on an even standing with drivers. They can—and should—be made even safer with LPIs—Leading Pedestrian Intervals. LPIs give crossing pedestrians a few-second head start before the green light, so they can claim the intersection, which may compel turning drivers to proceed with greater caution. The signals should be timed to 60 seconds or less, with LPIs to encourage a walkable downtown.

All changes to signalized intersections should be modeled in a future study, to give consideration to all roadway users, including the light-rail along Main Street.

WAYFINDING (MID-TERM / LONG-TERM)

Wayfinding signs serve as essential tools for both vehicle and pedestrian navigation, ensuring that people can easily navigate the Downtown. By providing clear and concise information, wayfinding signage enhances the overall experience by making it more accessible and welcoming.

For drivers, wayfinding signage plays a pivotal role in directing traffic flow. Directional signs guide motorists to key destinations, parking areas, and amenities. Identification signs, which clearly mark parking lots and garages, further assist drivers in locating convenient parking options. By streamlining the process of finding parking and navigating the streets, vehicle wayfinding signage contributes to a smoother and more efficient downtown experience.

Pedestrian wayfinding signage is equally important in creating a walkable and enjoyable downtown environment. Informational signs and maps provide pedestrians with valuable information about nearby attractions, amenities, and services. Directional signs with walk times help guide foot traffic to popular destinations such as parks, museums, restaurants, and shops. Identification signs, which highlight key landmarks and points of interest, make it easier for pedestrians to orient themselves and explore the area confidently. Effective pedestrian wayfinding signage not only enhances the safety and convenience of walking in Downtown Mesa but also encourages people to discover and engage with the city's offerings.

IMPROVING WAYFINDING IN DOWNTOWN MESA

Wayfinding signage can have several different functions. In Downtown Mesa, many public parking facilities are underutilized, which often stems from their lack of visibility. Directional signage for vehicles can play a crucial role in addressing this problem. By clearly guiding drivers to these parking facilities, directional signs can help maximize the use of available parking spaces. This not only benefits drivers but also supports local businesses by making it easier for customers to find convenient parking closest to their destination.

Pedestrian wayfınding signage in Mesa can also be enhanced by including walk times on informational signs and maps. Given the hot climate, knowing how far a destination is on foot can be a deciding factor for many pedestrians. By providing estimated walk times, these signs can help individuals plan their routes more effectively, ensuring they are prepared for the conditions and can make informed decisions about their travel. Identification signs in Mesa can also call out parking facilities by name and highlight key landmarks.

GATEWAY - CREATES A SENSE OF ARRIVAL

IDENTIFICATION - ID LANDMARKS

INFORMATION - CONTEXT AND DIRECTION

NAVIGATION AND WAYFINDING

To implement wayfinding signage in Downtown Mesa, the City should begin by conducting a dedicated wayfinding and signage study. This study would define a focused area—ideally aligned with the boundaries of Special Improvement District 228—and identify key destinations for both locals and visitors. These destinations should prioritize municipal services, public parking, major institutions, and transportation hubs, as these are less likely to change over time compared to private businesses. A catalog of signage typologies should be developed, including vehicle directional signs, pedestrian directional signs, informational map signs, identification signs, and gateway signs. Given the current needs around vehicular navigation to parking and pedestrian accessibility, directional signs for vehicles and pedestrians should to be prioritized. The signage system should reflect the City's branding to ensure visual consistency and civic identity. Once a signage design is agreed upon, fabrication and installation can occur over time as funding allows.

Implementation

A plan is most effective when its recommendations are paired with actionable next steps. The City of Mesa has a tremendous opportunity to make short-term changes to adopt the recommendations outlined in Section 3 through the City's repaying program. Over the next four years, the City has plans to mill and repaye much of the Downtown Mesa road network, beginning with the northwest quadrant (between Main Street and University Drive, and Center Street and Country Club Drive). The City is also advancing a design for Center Street that incorporates many of the micromobility and parking practices discussed in this report.

Below is a summary of the recommendations for the Downtown Mesa Micromobility and Parking Study, by implementation time frame. The following pages show cross sections for each street in Downtown Mesa. These cross sections should be reviewed during the striping plan development. At intersections, designs should use standards from the NACTO Urban Street Design Guide for best practices.

SHORT-TERM

ROADWAY - Restriping Plan and Study to Remove Suggested Signals in Favor of All Way Stops

ROADWAY - Establish Pick-Up/Drop-Off Locations in Downtown Mesa at Mobility Hubs

ROADWAY - Formalize Bicycle and Micromobility Parking Locations in Downtown Mesa at Mobility Hubs

PARKING - Adjust on-street time restrictions (2-hour limit on Main Street; 3-hour limit within Main Street Core, besides 2-hour limit on Main Street; no limits beyond Main Street Core)

PARKING - Expand public access to quasi-private lots

PARKING - Adjust parking permit system to monthly permit for Pepper Place Garage and Eco Mesa Garage, and daily permit for on-street parking and off-street facilities (does not include Pepper Place Garage, Eco Mesa Garage, and Main Street)

MID-TERM

PARKING - Monitor permit demand and parking occupancy to determine if monthly permit system should be expanded to other off-street lots

PARKING - Modify parking requirements for developments to reduce need for private parking construction within Downtown Mesa

ROADWAY - Restriping Plan

ROADWAY - Wayfinding and Navigation Study

ROADWAY - Remove curb extensions along South MacDonald and Second Avenue to create a protected bicycle facilty

ROADWAY - Extend bicycle connections at MLK Boulevard and Second Avenue

LONG-TERM

PARKING - Establish parking benefit district in Downtown Mesa by pricing preferred parking, as parking demand exceeds 85% in the Main Street Core; remove all time restrictions when parking is paid.

ROADWAY - Rebuild curb line across Downtown, to provide sidewalk level bicycle facilities and narrower pedestrian crossings, while maintaining parking

Proposed Cross Sections

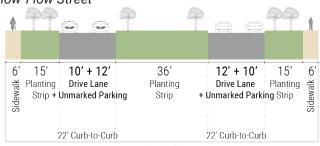
NORTHWEST QUADRANT

NORTH ROBSON STREET AT WEST SECOND STREET

Slow-Flow Street

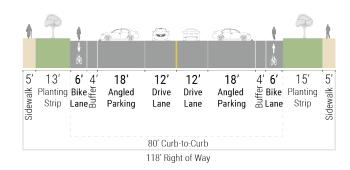
120' Right of Way

WEST SECOND STREET

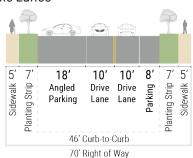

Slow-Flow Street

123' Right of Way

NORTH MACDONALD


BETWEEN WEST SECOND STREET AND WEST THIRD PLACE Slow-Flow Street

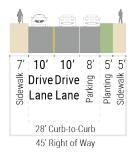
122' Right of Way


WEST FIRST STREET

Protected Bike Lanes

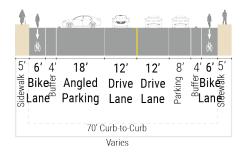
WEST THIRD PLACE

Protected Bike Lanes

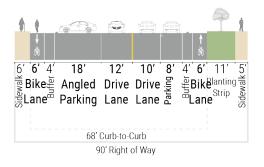

PEPPER PLACE Slow-Flow Street

10' 10' Angled Drive Drive Lane Parking Lane Lane 45' Curb-to-Curb 55' Right of Way

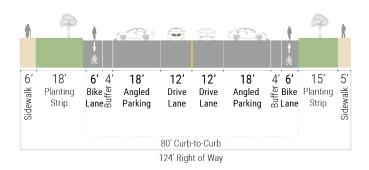
^{*}Note: cross sections do not show gutterline. Where gutterlines exist, buffer should be reduced to no less than 18-inches and allow for a minimum bike lane pavement width of 5-feet.


NORTHEAST QUADRANT

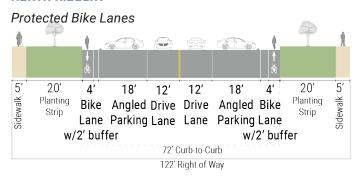
NORTH PASEDENA


EAST SECOND STREET

Protected Bike Lanes


NORTH POMERDY

Protected Bike Lanes

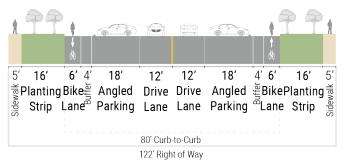


EAST FIRST STREET

Protected Bike Lanes

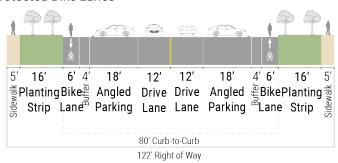
NORTH HIBBERT

A more detailed design of North Pomeroy and Hibbert Street should be developed through the Site 17 Development design process. These streets should prioritize non-auto connections to Main Street.

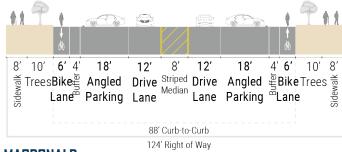

This section details the proposed cross sections and diagrams suggesting the preferred striping plan for the Downtown. Note, these are examples of mid-block cross sections. Actual designs will need to adjust from the typical to provide acceptable tapers and transitions to intersections, such as dropping parking to make room for left-turn lanes or transitions to roundabouts.

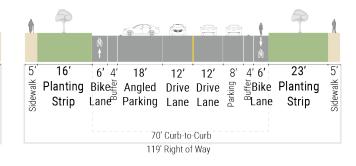
*Note: cross sections do not show gutterline. Where gutterlines exist, buffer should be reduced to no less than 18-inches and allow for a minimum bike lane pavement width of 5-feet.

SOUTHWEST QUADRANT


ROBSON

Protected Bike Lanes

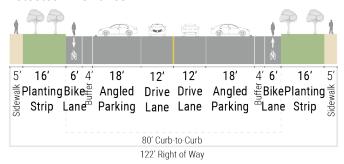

WEST FIRST AVENUE


Protected Bike Lanes

MACDONALD Protected Bike Lanes

MACDONALD

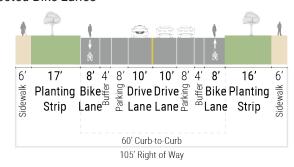
Protected Bike Lanes


West Second Avenue and South MacDonald have existing curb extensions. The cross sections above represent the mid-term condition when the curb extensions are removed. Until this condition, additional buffer should be considered at the curb line.

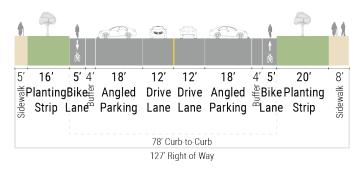
*Note: cross sections do not show gutterline. Where gutterlines exist, buffer should be reduced to no less than 18-inches and allow for a minimum bike lane pavement width of 5-feet.

SOUTHEAST QUADRANT

SOUTH SIRRINE STREET


Protected Bike Lanes

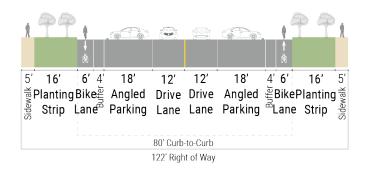
South Sirrine Street has existing curb extensions. The cross section above represents the mid-term condition when the curb extensions are removed.


EAST FIRST AVENUE

Protected Bike Lanes

SOUTH HIBBERT STREET

Protected Bike Lanes


EAST SECOND AVENUE

Protected Bike Lanes

CENTER STREET

Ongoing design plans show Center Street as a complete street, with expanded parking, protected bicycle facilities, and enhanced bus stops. This design should remove the two-way left-turn lane, increasing space along the corridor for further expansion of the parking and micromobility network.

*Note: cross sections do not show gutterline. Where gutterlines exist, buffer should be reduced to no less than 18-inches and allow for a minimum bike lane pavement width of 5-feet.