Exhibit 14 - Master Wastewater Report

MASTER WASTEWATER REPORT

FOR

HAWES CROSSING

MESA, ARIZONA

Prepared For: Mr. James Boyle **Mesa-Casa Grande Land Co. LLC.** 19965 E Elliot Rd. Mesa, AZ 85212

Prepared By: HILGARTWILSON, LLC 2141 East Highland Avenue, Suite 250 Phoenix, AZ 85016 Phone: (602) 490-0535 Fax: (602) 368-2436

October 2019 HW Project No. 1833

MASTER WASTEWATER REPORT

FOR

HAWES CROSSING

TABLE OF CONTENTS

2.0 INTRODUCTION 2 2.1 Background and Project Location. 2 2.2 General Description 2 2.3 Purpose of Report. 2 2.4 Previous Studies and Plans 3 3.0 DESIGN CRITERIA. 3 3.1 City of Mesa Design Criteria 3 4.0 WASTEWATER FLOWS. 5
2.1 Background and Project Location
2.2 General Description 2 2.3 Purpose of Report 2 2.4 Previous Studies and Plans 3 3.0 DESIGN CRITERIA 3 3.1 City of Mesa Design Criteria 3 4.0 WASTEWATER FLOWS 5
2.3 Purpose of Report
2.4 Previous Studies and Plans 3 3.0 DESIGN CRITERIA
3.0 DESIGN CRITERIA
3.1 City of Mesa Design Criteria
4.0 WASTEWATER FLOWS
4.1 Land Use
4.2 Wastewater Flow Calculations
5.0 EXISTING WASTEWATER SYSTEM INFRASTRUCTURE
5.1 Wastewater Collection System
5.2 Wastewater Treatment
6.0 PROPOSED WASTEWATER SYSTEM INFRASTRUCTURE
6.1 Proposed Wastewater Collection System Improvements
6.2 City Required Sewer Main Upsizing
6.3 Offsite Flows
6.4 Wastewater Treatment
6.5 Wastewater System Phasing
7.0 DEVELOPMENT VILLAGES
7.1 Definition
7.2 · Overview
7.3 Village 1
7.4 Village 2
7.5 Village 3
7.6 Village 4
7.7 Village 5
7.8 Village 6 (State Land Property)
7.9 Village 7 (State Land Property)
7.10 Village 8 (State Land Property)
8.0 HYDRAULIC MODEL AND RESULTS 12
8.1 Design Methodology 12
8.2 Model Results 13
8.3 Wastewater Capacity
9.0 CONCLUSIONS
10.0 REFERENCES

i

APPENDICES

- A. Figures
- B. Tables
- C. Excerpts from City of Mesa 2018 Wastewater Master Plan Update (City of Mesa, 2018)
- D. Hydraulic Model Results

FIGURES

1.	Vicinity Map	Appendix A
2.	Conceptual Land Use Plan	Appendix A
3.	Village Exhibit	Appendix A
4.	Wastewater System Improvements	Appendix A
5.	Village 1 Required Infrastructure	Appendix A
6.	Village 2 Required Infrastructure	Appendix A
7.	Village 3 Required Infrastructure	Appendix A
8.	Village 4 Required Infrastructure	Appendix A
9.	Village 5 Required Infrastructure	Appendix A
10.	Village 6 Required Infrastructure	Appendix A
11.	Village 7 Required Infrastructure	Appendix A
12.	Village 8 Required Infrastructure	Appendix A

TABLES

1.	Wastewater System Design Criteria	3-4
2.	City of Mesa Peaking Factors	5
3.	Land Use Summary	5
4.	Wastewater Flow Summary	6
5.	Required Wastewater Infrastructure by Village	
6.	Manhole RIM Adjustments	
B.1	Wastewater Flow Calculations by Outfall	Appendix B
B.2	Wastewater Flow Calculations for Existing Sewer Network	Appendix B
B.3	Wastewater Flow Calculations and Land Use Summary	Appendix B
B.4	Wastewater Flow Calculations by Village	Appendix B
B.5	Offsite Sewer Capacity Calculations	Appendix B

1.0 EXECUTIVE SUMMARY

Hawes Crossing (the Project) is a proposed approximate 1,132 acre master planned mixed use development generally located west of Ellsworth Road, east of Sossaman Road, north of Watson Road and south of Elliot Road in the City of Mesa, Arizona. The Project will consist of up to 4,615 residential units, approximately 426 acres of commercial, industrial, and/or research and development land uses, and approximately 52 acres of developed open space.

This Master Wastewater Report has been prepared in support of the General Plan Amendment (GPA) for the Project. This report identifies and evaluates the proposed wastewater system infrastructure for serving the Project in accordance with City of Mesa design criteria. Estimated wastewater flows for the Project have been calculated based on the proposed land uses and current City design criteria. This report also identifies the anticipated average daily flows, peak flows, and sewer line sizes and alignments for the Project.

The proposed wastewater collection system has been designed in accordance with current City of Mesa design criteria as outlined in the City's *Engineering Procedure Manual: 2017 Engineering & Design Standards* (City of Mesa, 2017). The average daily flow projected for the Project based on the current land use plan and the City of Mesa design criteria is 1,441,992 gpd (1,001.4 gpm). Assuming a peaking factor of 1.90 for existing City sewer mains, the peak flow projected for the Project is 2,739,785 gpd (1,902.6 gpm).

To avoid excessive detail at the master planning level while still ensuring the final design will meet all applicable criteria, a minimum 7-ft of cover is used wherever possible, a 0.1-ft drop is applied to all manholes, and pipe lengths conform to City of Mesa manhole spacing requirements.

The sewer lines identified in this report will comprise the backbone of the Project's wastewater system infrastructure and consists of 8-inch to 21-inch sewer mains. Sewer layouts, sizing and alignments within individual parcels will be identified in detail as each parcel is developed. The Project area is currently served by the Greenfield Water Reclamation Plant (GWRP). The GWRP produces A+ effluent.

The Project is divided into development blocks, denoted as Villages, for the purposes of development sale offerings. These Villages are anticipated to be developed in phases specific to the developers needs and the wastewater system infrastructure will similarly be constructed in phases as required to serve each Village or Village phase in the Project. For any given Village, Village phase, or parcel development, the downstream sewer mains required to serve that given Village, Village phase, or parcel will be constructed at the same time as said Village, Village phase, or parcel is developed. Furthermore, all sewer mains constructed for each Village, Village phase, or parcel will be sized for build-out conditions.

2.0 INTRODUCTION

2.1 Background and Project Location

Hawes Crossing (the Project) is located in the City of Mesa (the City) within portions of Sections 8, 16, 17, 20, and 21 of Township 1 South, Range 7 East of the Gila and Salt River Base and Meridian. The Project is comprised of an approximate 1,132-acre master planned mixed use development located to the east and west of Loop 202 approximately between Warner Road and Elliot Road. The Project is generally bound by Elliot Road on the north, Ellsworth Road on the east, Warner Road on the south, and Sossaman Road on the west.

Figure 1 in Appendix A provides a vicinity map for the Project.

2.2 General Description

The Project is planned as a mixed-use development, which will include single family, medium density, and high density residential areas, parks and open space, along with office, mixed use, commercial, and light industrial areas. The land use plan for the Project is presented in Figure 2 (Conceptual Land Use Plan) of Appendix A. The site currently consists of existing dairies, light industrial and agricultural districts as well as estate residential properties (RU-43). The site generally slopes from east to west at approximately 0.4 percent. The existing ground at Hawes Crossing contains numerous undulations formed by local ridges and ravines. Overall, the existing ground slopes towards Sossaman Road and the Roosevelt canal. Portions of the Project are within the City limits with the remaining area under the jurisdiction of Maricopa County. It is assumed the areas within Maricopa County will be annexed into the City of Mesa and a General Plan Amendment and PAD Rezone will be processed and approved by the City.

The Project is located within the City of Mesa wastewater service area. It is in the Greenfield Water Reclamation Plant (WRP) wastewater collection area and wastewater infrastructure for the Project will be owned and operated by the City of Mesa.

2.3 Purpose of Report

This Master Wastewater Report has been prepared in support of the Hawes Crossing General Plan Amendment (GPA) and supports the proposed land use plan as described in the GPA. The purpose of this report is to identify and evaluate the proposed wastewater system infrastructure for serving the Project in accordance with the City of Mesa *Engineering Procedure Manual: 2019 Engineering & Design Standards* (City of Mesa, 2019). This Master Wastewater Report discusses the proposed wastewater infrastructure within the Project and identifies average daily wastewater flows and peak wastewater flows generated by the Project. It also identifies anticipated sewer line sizes and alignments, and presents the results from a hydraulic model of the proposed wastewater infrastructure.

This report provides a conceptual design of the "backbone" wastewater infrastructure within the Project and is intended to provide an overall wastewater

solution, establish design guidelines, and become the basis of design for more detailed studies for each parcel as the Project develops.

2.4 Previous Studies and Plans

There are no known previous wastewater studies or plans for the Project site.

3.0 DESIGN CRITERIA

3.1 City of Mesa Design Criteria

The proposed wastewater collection system for the Project has been designed in accordance with current City of Mesa design criteria as outlined in the City of Mesa Engineering Procedure Manual: 2019 Engineering & Design Standards (City of Mesa, 2019).

For the purposes of this Master Wastewater Report, to avoid excessive detail at the master planning level while still ensuring the final design will meet all applicable criteria, a 0.1-ft drop is applied to all manholes and a cover of 7.0 feet is used to account for changes and/or extensions to sewer alignments in final design. A summary of the design criteria used in this Master Wastewater Report is provided in Table 1 and Table 2.

For the purposes of this report, since specific building sizes have not been identified for the commercial/retail, office, industrial, and research and development parcels, this report assumes an acreage-based flow factor (1,300 gpd/acre) for these parcels in lieu of the City's standard flow factor, which is based on building square footage. The wastewater flows for these parcels will be refined using the City's flow factors during the design stage as final building sizes are determined.

TABLE 1 WASTEWATER SYSTEM DESIGN CRITERIA				
Category	Value	Unit		
Population Density				
Medium Density Residential (LDR) (2-4 DU/acre)	3.0	per dwelling unit		
Medium Density Residential (LMDR) (4-6 DU/acre)	3.2	per dwelling unit		
Medium Density Residential (MDR) (6-10 DU/acre)	2.7	per dwelling unit		
High Density Residential (MHDR) (10-15 DU/acre)	2.0	per dwelling unit		
High Density Residential (HDR) (15+ DU/acre)	1.7	per dwelling unit		

Average Daily Flow					
Medium Density Residential (LDR) (2-4 DU/acre)	80	gpcd			
Medium Density Residential (LMDR) (4-6 DU/acre)	80	gpcd			
Medium Density Residential (MDR) (6-10 DU/acre)	80	gpcd			
High Density Residential (MHDR) (10-15 DU/acre)	80	gpcd			
High Density Residential (HDR) (15+ DU/acre)	80	gpcd			
Commercial/Retail	1,300	gpad			
Office	1,300	gpad			
Industrial	1,300	gpad			
Research & Development	1,300	gpad			
System Layout					
Minimum Sewer Depth of Cover ³	7.0	ft			
Minimum Pipe Diameter	8	Inches			
Minimum Manhole Invert Drop (0 - 90 degrees) ¹	0.1 - 0.2	ft drop across MH			
Minimum Manhole Invert Drop (> 45 degrees) ¹	0.1	ft drop across MH			
Maximum Manhole Spacing (8" to 15" pipes) ²	500	ft spacing			
Maximum Manhole Spacing (18" to 30" pipes) ²	600	ft spacing			
Minimum Pipe Slopes	Minimum Pipe Slopes				
8-inch	0.0033	ft/ft			
10-inch	0.0024	ft/ft			
12-inch	0.0019	ft/ft			
15-inch	0.0014	ft/ft			
18-inch	0.0011	ft/ft			
21-inch	0.0009	ft/ft			
System Performance					
Manning's Roughness Coefficient (n)	0.013				
Minimum Full Flow Velocity	2.0	fps			
Maximum Velocity	9.0	fps			
Sewer Capacity Ratio (d/D, max at peak flow)	0.67				
 Notes: For the purposes of this Master Wastewater Report, a drop of 0.1-ft is applied at each manhole to allow for flexibility while still meeting the City design criteria at the design stage, as additional manholes may be added at final design. For the purposes of this master planning-level evaluation, manholes are placed schematically and some manholes may be spaced further apart along straight runs 					

than is required by the City. All manholes include a 0.1-ft drop to account for additional manholes with bends that may be required at final design.

3. Per City of Mesa design criteria, 6 feet of cover will be required during final design. For the purposes of this master planning-level evaluation, 7 feet of cover is used to provide flexibility of future sewer layouts while still ensuring City design criteria can be met.

TABLE 2 CITY OF MESA PEAKING FACTORS					
Average Flow (MGD)	Average Flow (MGD) Existing Lines New Lines				
Less than 1.0	2.30	3.00			
1.0 to 10	1.90	2.50			
10 to 20	1.70	2.30			
20 to 30	1.60	2.10			
30 to 40	1.50	2.00			
40 to 50	1.40	1.90			
Greater than 50	1.30	1.75			

4.0 WASTEWATER FLOWS

4.1 Land Use

The Project will consist of up to 4,615 residential units and approximately 425.6 acres of non-residential use including commercial, industrial, research and development and other mixed used development. The Project will also incorporate up to 51.7 acres of open space including parks and amenities. Land use allocations and densities are assumed from target density ranges provided in the *Mesa Urban Development - Conceptual Land Use Master Plan* (Greey Pickett, 2019). Figure 2 in Appendix A shows the anticipated land uses and densities throughout the Project. Table 3 below summarizes these anticipated land uses and Table B.1 in Appendix B shows the land use budget for each parcel within the Project. Land uses, areas, densities, and dwelling unit counts are subject to change as the Project moves from master planning to preliminary and final design.

TABLE 3							
PROPOSED LAND USE SUMMARY							
Assigned Parcel Group	signed Zoning Category Group Category C						
А	RS-6 & RSL-4.0	Low/Medium Density Residential (LMDR)	128.1	5.0	642	-	
В	RSL-2.5	Medium Density Residential (MDR)	203.1	10.0	2,031	-	
С	RM-5	High Density Residential (MHDR)	41.7	25.0	1,044	-	
D	MX	Mixed Use	148.8	12.0	898	74.7	
E	LI	Light Industrial	202.4	-	-	202.4	
F	LC/GC	Commercial	142.7	-	-	142.7	
G	OC	Office	5.8	-	-	5.8	
Н	-	Park/Open Space (Turf Irrigation)	51.7	-	-	-	
-	-	Other/Streets/Etc.	207.5	-	-	-	
GRAND TOTAL: 1,131.8 - 4,615 425.6							

4.2 Wastewater Flow Calculations

Anticipated average daily wastewater flows and peak wastewater flows for the Project were calculated based on the design criteria in Table 1 and Table 2 and the land uses identified in Table B.1 in Appendix B. It is anticipated that the offsite infrastructure for the Project will also convey wastewater flows for additional offsite parcels west of the Project. These offsite areas do not have specific land use designations from the City of Mesa or other private developers and are therefore not incorporated into this Master Wastewater Report. The average flow and peak flow for each grouping of land uses are summarized in Table 4 below. More detailed wastewater calculation tables are provided in Tables B.1, B.2, B.3, and B.4 in Appendix B.

TABLE 4						
WASTEWATER FLOW SUMMARY						
Assigned Bargel Grouping	Average Daily Flow		Peaking	Peak Flow		
Assigned Farcel drouping	gpd	gpm	Factor	gpd	gpm	
A	164,352	114.1	3.0	493,056	342.4	
В	438,696	304.7	3.0	1,316,088	914.0	
С	141,984	98.6	3.0	425,952	295.8	
D	240,790	167.2	3.0	722,370	501.6	
E	263,120	182.7	3.0	789,360	548.2	
F	185,510	128.8	3.0	556,530	386.5	
G	7,540	5.2	3.0	22,620	15.7	
Parks/Open Space	-	-	-	-	-	
TOTAL (NEW PIPES) ¹ :	1,441,992	1,001.4	3.00	4,325,976	3,004.2	
TOTAL (EXISTING PIPES) ^{2,3} : 1,441,992 1,001.4 1.90 2,739,785 1,902.6						
NOTES: 1) City of Mesa peaking factor for new pipes experiencing Average Day Flows from 1.0 – 10.0 MGD is 2.5. However, since no single new pipe will convey the flows from the entire Project, a peaking factor of 3.0 is used here, representative of the peaking factor for new pipes experiencing Average Day Flows < 1.0 MGD.						

City of Mesa peaking factor for existing pipes experiencing Average Day Flows from 1.0 – 10.0 MGD is 1.90.
 Total in existing pipes constitutes all flows downstream of Outfall #9 in the existing 54-inch sewer main along the Roosevelt Canal.

5.0 EXISTING WASTEWATER SYSTEM INFRASTRUCTURE

5.1 Wastewater Collection System

As shown in Figure 4 in Appendix A, existing wastewater infrastructure within the Project vicinity consists of a 42-inch sewer trunk main that flows to the east along Elliot Road and upsizes to 48-inches from Sossaman Road to the eastern boundary of the Roosevelt Canal. At the canal, it turns south, upsizes to a 54-inch main and conveys flows south along the east side of the Roosevelt Canal. There is an 18-inch sewer stub along the 54-inch main at Warner Road and an 18-inch sewer main was constructed and sleeved with the Loop 202 overpass to traverse the Loop 202 along Warner Road. To the northwest of the Project, an existing 24-inch main conveys flows along Peralta Avenue.

5.2 Wastewater Treatment

The Project is within the Greenfield service zone and will be served by the Greenfield Water Reclamation Plant (GWRP). The GWRP was constructed in 2007 with treatment capacity for handling 16 MGD of liquids and 24 MGD of equivalent solids. The liquid process includes screening, grit removal, primary clarification and biological treatment including nitrogen removal, secondary sedimentation, filtration and disinfection. Solids handling facilities include blending, thickening, anaerobic digestion and dewatering. At build out, the liquid's facility will be able to handle 46 MGD while the solids facility will be able to handle 64 MGD. The GWRP will process biosolids from Mesa's Southeast Water Reclamation Plant, as well. The plant produces A+ effluent.

The GWRP is owned by a consortium of municipalities including the Town of Queen Creek, the Town of Gilbert, and the City of Mesa. Although the three municipalities jointly own the plant, the City of Mesa operates and maintains it. Ultimate capacity within the plant is planned to be divided, with 24 MGD owned by the City of Mesa, 20 MGD owned by the Town of Gilbert, and 8 MGD owned by the Town of Queen Creek. Per discussions with the City, the GWRP Phase III Expansion is currently under construction and will be on-line in the fall of 2020. This will increase the existing liquids and solids treatment capacity to 30 MGD and 38 MGD, respectively.

6.0 PROPOSED WASTEWATER SYSTEM INFRASTRUCTURE

6.1 Proposed Wastewater Collection System Improvements

Figure 4 in Appendix A shows the backbone wastewater infrastructure proposed for the Project. The system is comprised of 8-inch to 21-inch gravity sewer mains that generally route flows west to tie-in points along the existing sewer infrastructure along Elliot Road and Warner Road.

The system layout is designed using proposed parcel boundaries, proposed collector and arterial roadway alignments, City of Mesa quarter section maps and as-built plans that identify existing wastewater infrastructure adjacent to the Project. Elevations identified for areas west of the Loop 202 are based on recent aerial topography while areas east of the Loop 202 are based on elevation data from the Flood Control District of Maricopa County (FCDMC) at 2-foot intervals. The system layout is designed using existing ground elevations and will be refined as each individual parcel develops. Where possible, the sewer trunk mains will follow arterial streets and major collectors to keep each parcel as independent as possible, allowing for various sub-phasing opportunities for the Project.

The proposed wastewater infrastructure will tie into the existing City of Mesa wastewater infrastructure adjacent to the Project at nine locations. Eight of the nine tie-in locations are along the existing 42-inch sewer main in Elliot Road at existing manholes. Two tie-in locations will be along Elliot Road between Sossaman Road and 80th Street. A third tie in location will be at the intersection of Elliot Road and 80th Street. A fourth tie in location will be between 80th Street and Hawes Road. A fifth tie-in will be at the intersection of Elliot Road and 80th street the intersection of Elliot Road and 80th Street and Hawes Road. A fifth tie-in will be at the intersection of Elliot Road and Hawes Road. A sixth tie-in point will be just west of the Loop 202 while the seventh and eighth tie-in points will be located

just east of the Loop 202. The final, ninth tie-in location will be along the existing 54inch sewer main on the east side of the Roosevelt Canal, at the Warner Road alignment. The crowns of the proposed sewer mains will match the crowns of the existing sewer mains at each tie-in location.

To ensure every parcel can be properly served and to maintain flexibility for final design, the proposed layout shown in this Master Wastewater Report incorporates a 0.1-ft drop across every manhole, regardless of pipe direction change. Pipes were also placed at a minimum depth of 7-ft where possible to allow for further flexibility during final design. Select areas, identified on Figure 4 in Appendix A and in Section 8.1, have had their rim elevations adjusted to accommodate this 7-ft cover requirement. These areas may require some fill to meet minimum slope and cover requirements. Final required fill quantities, if any, will be determined during preliminary and final design.

Based on the site's existing topography, the proposed sewer mains generally range in depth from 7-feet to 25-feet. Each sewer alignment was analyzed to minimize pipe depth where possible. Depths are anticipated to decrease as the final site grading is completed and as the roadway design reduces the undulations of the existing ground. The sewer depths shown herein are based on existing ground elevations and may vary.

6.2 City Required Sewer Main Upsizing

The City is requiring that portions of the sewer main in Warner Road be upsized to meet the City's 2018 Wastewater Master Plan Update (City of Mesa, 2018) guidelines. To serve the Project's flows, anAn 18-inch sewer main would be required in Warner Road from the Roosevelt Canal to the existing 18-inch sewer main that crosses below Loop 202. However, the City requires that the portion of this 18-inch main between the Roosevelt Canal and 80th Street be upsized to 21-inches. Additionally, to serve the Project's flows, a 12-inch sewer main is needed in Warner Road between Ellsworth Road and Loop 202. However, the City is requiring that this portion of the sewer main be upsized to 18-inches to serve future offsite development.

The City may contribute to the upsizing of sewer lines that are upsized for regional uses based on the City's policies on City cost sharing at the time of design and construction. This includes the proposed 21-inch and 18-inch sewer mains in Warner Road. If the City's cost sharing of the line upsizing is not available at the time of development, the City will determine how the developer should proceed with the design and construction of the main (including the potential for installation of what is only required to server the development itself).

6.3 Offsite Flows

It is anticipated that the proposed 18-inch and 21-inch sewer main in Warner Road will be used to serve both the Project as well as offsite flows from parcels west and east of the Project. These offsite areas have no designated land use from the City of Mesa or other private developers at this time and as such, wastewater flows for these parcels have not been determined. Flows from these offsite parcels will be considered during preliminary and final design of the 18-inch and 21-inch sewer

mains to confirm they will have adequate capacity. Areas west of the Project may also potentially flow directly west to the existing 54-inch sewer on the east side of the Roosevelt Canal, since the existing topography in the area generally slopes from east to west. Areas east of the Project may also sewer south to existing wastewater infrastructure along Ray Road. Potential tie in locations for offsite flows along the proposed 21-inch sewer main have been shown on Figure 4 in Appendix A.

6.4 Wastewater Treatment

Flows from the Project will be conveyed to the Greenfield Water Reclamation Plant (GWRP). As stated in Section 5.2, the GWRP has current capacity for 16 MGD of liquids and 24 MGD of equivalent solids. Ultimate build out capacity for solids handling at the GWRP is anticipated to be 64 MGD, with a liquids handling capacity of 46 MGD. Per discussions with the City, the GWRP Phase III Expansion is currently under construction and will be on-line in the fall of 2020. This will increase the existing liquids and solids treatment capacity to 30 MGD and 38 MGD, respectively.

6.5 Wastewater System Phasing

It is anticipated that the Project will be developed in several phases. The wastewater system infrastructure will also be constructed in phases as required to serve each phase of development. For any given phase, the downstream sewer mains required to serve that phase will be constructed at the same time as said phase is developed. Furthermore, the downstream sewer mains that are installed will be sized for build-out conditions.

7.0 DEVELOPMENT VILLAGES

7.1 Definition

Villages shall exclusively mean development areas within the Hawes Crossing project boundary and are delineated numerically (1-8) on the subject Master Plans. The numerical value associated with a Village is not an indication or obligation of sequential phasing or development. Villages, or portions thereof, may develop independently from one another but with primary infrastructure in accordance with the associated Master Plan documents. Infrastructure shall be as outlined in the approved Master Plan documents, or an approved amendment to those documents. Interim or alternative solutions may be allowed on a case by case basis, subject to City of Mesa review and approval.

7.2 Overview

The Project is planned to be divided into eight development villages. Villages 1 - 5 consist of all the land within the Project that is not currently owned by the State. Villages 6 - 8 are State Land owned. Each village has different wastewater infrastructure requirements and the following sections detail these requirements. As shown, some villages will be sharing the cost of certain lengths of pipe and associated infrastructure outlined in the following sections. The infrastructure shown as being required to serve each Village is based on Figure 4 in Appendix A and is quantified as the necessary infrastructure to serve that village as a stand-alone unit.

The sewer mains shown in Figures 5 through 12 in Appendix A show only the backbone infrastructure in rights-of-way and infrastructure that is required to adequately provide wastewater service to the village. A summary of the necessary wastewater infrastructure for serving each village is provided in Table 5 below. Figure 3 in Appendix A outlines the village boundaries.

TABLE 5 REQUIRED WASTEWATER INFRASTRUCTURE BY VILLAGE						
Length of Pipe (feet)						
village	8-inch	10-inch	12-inch	18-inch	21-inch	
1	4,332	1,835	0	0	0	
2	10,401	1,732	498	0	5,752	
3	261	725	0	0	0	
4	0	0	0	2,653	5,752	
5	1,629	792	0	4,282	5,752	
6 (State Land)	7,441	167	0	1,347	5,752	
7 (State Land)	3,019 792 0 2,653 5,752					
8 (State Land)	7,308	0	831	7,198	5,752	

7.3 Village 1

Village 1 consists of parcels A-1, A-2, B-1 through B-6, C-1, and D-1. Village 1 comprises approximately 110.5 acres of the overall Project area. The required wastewater infrastructure for serving Village 1 includes a 1,835 LF 10-inch sewer main through parcel A-1 and south down 80th Street to Elliot Road. Approximately 4,332 LF of 8-inch sewer main will be required within the streets and easements of Village 1, including the offsite frontage along 80th Street, as per the conceptual roadway alignments shown on Figure 2 in Appendix A. Included in this 3,129 LF is a 261 LF 8-inch sewer stub required within the main entrance road to Village 1 from Elliot Road. The length of this stub is dependent upon the entrances to parcels D-1 (Village 1) and D-2 (Village 3) and is to be cost shared with the requirements for serving Village 3. The necessary wastewater infrastructure for serving Village 1 of the Project is shown on Figure 5 in Appendix A.

7.4 Village 2

Village 2 consists of parcels A-3 through A-5 (approximately 60% of each parcel), B-7 through B-14, approximately 50% of parcel B-15, C-2, C-3, C-4, and D-3 through D-6. Village 2 comprises approximately 247.0 acres of the overall Project area. The required wastewater infrastructure for serving Village 2 includes 498 LF of 12-inch sewer main and 1,732 LF of 10-inch sewer main running south, then east from the easternmost entrance of Village 2 along Elliot Road to serve the bulk of Village 2. An 817 LF section of 8-inch sewer main will be needed to serve parcels C-2 and the northwest portion of A-3. 4,786 LF 8-inch sewer main will be needed in 80th Street and the Mesquite Street alignment to serve those portions of parcels A-3, A-4, A-5, and B-15 that are unable to gravity flow north to Elliot Road but are still included in Village 2. Village 2 will also cost share in 5,752 LF of the 21-inch sewer main proposed in Warner Road from the Roosevelt Canal to 80th Street. The necessary

wastewater infrastructure for serving Village 2 of the Project is shown on Figure 6 in Appendix A.

7.5 Village 3

Village 3 consists of parcel D-2. Village 3 comprises approximately 21.2 acres of the overall Project area. Village 3 will share the cost of the 8-inch sewer main stub entering this portion of the Project between parcels D-1 and D-2. The length of this stub is dependent upon the entrances to parcels D-1 (Village 1) and D-2 (Village 3). As shown on Figure 7 in Appendix A, the length of this 8-inch stub is 261 LF and is to be shared with the requirements for serving Village 1. Village 3 will also require a 10-inch sewer main along the frontage in Hawes Road, per the City's Water Resources Department, for serving Village 3 of the Project is shown on Figure 7 in Appendix A.

7.6 Village 4

Village 4 consists of parcels B-25 and F-4. Village 4 comprises approximately 58.6 acres of the overall Project area. The required infrastructure for serving Village 4 includes 5,752 LF of 21-inch sewer in Warner Road to extend from the Roosevelt Canal to 80th Street. This 21-inch sewer main will be cost shared with Phases 2, 5, 6, 7, and 8. Village 4 also requires 2,653 LF of 18-inch sewer main from 80th Street to Hawes Road. Portions of this 18-inch sewer main will be cost shared with Phases 5, 6, 7, and 8. The necessary wastewater infrastructure for serving Village 4 of the Project is shown on Figure 8 in Appendix A.

7.7 Village 5

Village 5 consists of parcels B-21, B-23, B-24, F-3, and F-4. Village 5 comprises approximately 87.1 acres of the overall Project area. The required infrastructure for serving Village 5 includes 792 LF of 10-inch sewer main in Hawes Road from the village entrance along Hawes Road, south to Warner Road. This 10-inch sewer main will be cost shared with Village 7. Village 5 also requires 4,282 LF of 18-inch sewer main in Warner Road from 80th Street to the existing 18-inch sewer underneath the Loop 202. Portions of this 18-inch sewer main will be cost shared with Phases 4, 6, 7, and 8. Village 5 also requires 5,752 LF of 21-inch sewer main in Warner Road from the Roosevelt Canal to 80th Street. This 21-inch sewer main will be cost shared with Phases 2, 4, 6, 7, and 8. The necessary wastewater infrastructure for serving Village 5 of the Project is shown on Figure 9 in Appendix A.

7.8 Village 6 (State Land Property)

Village 6 consists of approximately 40% of parcels A-3 through A-5, approximately 50% of B-15, B-16 through B-20, B-22, C-5, C-6, F-2, and G-1. Village 6 comprises approximately 164.9 acres of the overall Project area. The required infrastructure for serving Village 6 includes 5,752 LF of 21-inch sewer main from the Roosevelt Canal to the entrance to 80th Street along Warner Road. This 21-inch sewer main will have cost sharing with Phases 2, 4, 5, 7, and 8. Village 6 will also require 1,347 LF of 18-inch sewer main from 80th Street to the entrance along Warner Road. Portions of this 18-inch sewer main will be cost shared with Phases 4, 5, 7, and 8. A 167 LF 10-inch stub will be required between parcels B-22 and G-1. 7,441 LF of 8-inch sewer main

will serve the individual parcels to route wastewater south to Warner Road. A portion of this 8-inch sewer along 80th Street will be cost shared with Village 2. The necessary wastewater infrastructure for serving Village 6 of the Project is shown on Figure 10 in Appendix A.

7.9 Village 7 (State Land Property)

Village 7 consists of parcels D-7, D-8, E-1, and F-1. Village 7 comprises approximately 155.5 acres of the overall Project area. The required infrastructure for serving Village 7 includes 5,752 LF of 21-inch sewer main in Warner Road from the Roosevelt Canal to 80th Street. This 21-inch sewer main will have cost sharing with Phases 2, 4, 5, 6, and 8. Village 7 will also require 2,653 LF of 18-inch sewer main from 80th Street to the Hawes Road. Portions of this 18-inch sewer main will be cost shared with Phases 4, 5, 6, and 8. A 792 LF 10-inch sewer main extends north in Hawes Road from Warner Road. This 10-inch sewer main will have a cost share with Village 5. 3,019 LF of 8-inch sewer main extends north in Hawes Road from the proposed 10-inch sewer main and south in Hawes Road from Elliot Road. The necessary wastewater infrastructure for serving Village 7 of the Project is shown on Figure 11 in Appendix A.

7.10 Village 8 (State Land Property)

Village 8 consists of parcels D-9 through D-11, E-2 through E-9, and F-6 through F-8. Village 8 comprises approximately 291.5 acres of the overall Project area. The required infrastructure for serving Village 8 includes 7,198 LF of 18-inch sewer main in Warner Road from 80th Street to the southeastern corner of the Project. Portions of this 18-inch sewer main will have cost sharing with Villages 4, 5, 6, and 7. Village 8 also requires 5,752 LF of 21-inch sewer main in Warner Road from the Roosevelt Canal to 80th Street. This 21-inch sewer main will be cost shared with Phases 2, 4, 5, 6, and 7. An 831 LF 12-inch sewer main conveys flows south through the entrance to Village 8 between parcels E-2 and E-9 along Warner Road. 7,308 LF of 8-inch sewer main will be required in the streets of Village 8. The necessary wastewater infrastructure for serving Village 8 of the Project is shown on Figure 12 in Appendix A.

8.0 HYDRAULIC MODEL AND RESULTS

8.1 Design Methodology

The proposed wastewater collection system was modeled using SewerCAD V8i by Bentley Systems, Inc. The wastewater flows shown in Table B.1 in Appendix B were distributed to individual manholes throughout the collection system to provide an appropriate distribution of average daily flows and peak flows within the system. The wastewater loading for a given parcel is generally applied to the most upstream manhole within the parcel to account for flows that may enter the system at multiple points within a pipe segment, thus ensuring the entire pipe segment has sufficient capacity to convey the anticipated flow. For parcels containing multiple or diverging sewer lines, wastewater loading for the parcel is distributed to the upstream manholes based on the approximate percentage of the parcel said sewer line will serve.

The wastewater model represents the wastewater collection system's backbone trunk mains. The sewer line alignments within individual parcels will be determined at the time of each parcel's design.

The proposed wastewater collection system was optimized using aerial topography, existing FCDMC topography, and the proposed land use plan to determine the best sewer alignments while minimizing pipe depths. The collection system shown in Figure 4 in Appendix A was designed to meet the design criteria as specified in Table 1. Pipes were assumed to have a Manning's n value of 0.013 and were designed to convey the projected peak flows from the development.

Four areas within the Project in parcels A-3, B-8, D-1, and D-8 have been raised to reflect changes needed to adequately provide City of Mesa cover requirements over the proposed sewer pipes. Figure 4 in Appendix A identifies these areas and makes note of existing cover using existing topography. Table 6 below shows the minimum adjustments needed to the existing rim elevations to adequately serve the parcel and meet City requirements. Cover requirement over the pipe has been kept at 7-feet to ensure flexibility during final design as the actual sewer main alignments become known.

TABLE 6							
MANHOLE RIM ADJUSTMENTS							
Parcel	SewerCAD Manhole ID	Existing Rim Elevation (ft.)	Adjusted Rim Elevation (ft.)	Elevation Difference (ft.)			
D 1	MH-38	1367.00	1368.50	1.50			
D-T	MH-39	1366.12	1367.30	1.18			
	MH-77	1359.02	1360.15	1.13			
B-8	MH-78	1359.00	1359.50	0.50			
	MH-79	1356.36	1357.75	1.39			
	MH-47	1353.00	1355.26	2.26			
	MH-48	1352.49	1356.56	4.07			
	MH-49	1354.50	1357.70	3.20			
A-3	MH-50	1354.00	1358.81	4.81			
	MH-51	1353.19	1360.10	6.91			
	MH-52	1355.75	1361.94	6.19			
	MH-53	1358.85	1363.69	4.84			
	MH-221	1378.40	1379.69	1.29			
	MH-222	1376.00	1378.50	2.50			
D-8	MH-223	1374.00	1377.19	3.19			
	MH-224	1374.54	1376.07	1.53			
	MH-225	1375.00	1375.03	0.03			

8.2 Model Results

The hydraulic model results show that the proposed wastewater collection system for the Project will adequately convey the projected peak flows to the existing City of

Mesa wastewater infrastructure in Elliot Road and along the Roosevelt Canal. Detailed hydraulic model results for the onsite collection system are included in Appendix D. As shown in the results, all proposed gravity sewer mains in the Project will convey the peak flows while maintaining full-flow velocities of less than nine feet per second as required by the City of Mesa.

The results from the peak flow scenario demonstrate that the gravity sewer mains within the Project will be able to convey the peak flows with a d/D ratio of less than 0.67, as required by the City of Mesa.

In accordance with the City's current design criteria, the sewer mains are anticipated to be Polyvinyl Chloride (PVC). Larger sewer mains may be constructed of other materials, as approved by the City of Mesa, and will be determined at the time of final design. Final invert and rim elevations will be determined at the time of final design. Pipe slopes will also be refined during final design as final grades are known.

8.3 Wastewater Capacity

The proposed 21-inch sewer main in Warner Road was evaluated using a minimum slope of 0.0029 ft./ft. from the existing stub along the 54-inch sewer main to Hawes Road. This was done to produce the maximum continuous slope possible using the existing ground elevations to provide a realistic depth over diameter (d/D) ratio within the pipe for the addition of future offsite flows. The model shows that the maximum d/D ratio for this proposed 21-inch sewer main utilizing a peaking factor of 3.0 for new pipes with under 1.0 MGD of average daily flow is 0.469 (46.9%) occurring just west of 80th Street on the sewer mains with a 0.0029 ft./ft. slope. This d/D ratio has the potential to be lowered further by increasing the pipe's slope as the Project moves from master planning into preliminary and final design. Flows from the Project will also be refined as the Project moves from master planning to preliminary design. Detailed offsite sewer capacity calculations can be found in Table B.5 in Appendix B. Alternatively, in calculating the projected d/D of the same section of the proposed 21-inch sewer main using the City of Mesa peaking factor of 2.30 for flows routed through existing lines, the 21-inch sewer main is anticipated to have a d/D of 0.404 (40.4 %) at a slope of 0.0029 ft./ft.

9.0 CONCLUSIONS

- This Master Wastewater Report identifies the locations and sizes of the proposed onsite and offsite wastewater system infrastructure required to convey flows from the Project to the existing Greenfield Water Reclamation Plant.
- The proposed gravity wastewater collection system consists of a network of 8-inch through 21-inch sewer mains, which will convey flows to nine separate outfalls along existing City wastewater infrastructure.
- The average daily flow projected for the Project based on the current land use plan and the City of Mesa design criteria is 1,441,992 gpd (1,001.4 gpm). Assuming a peaking factor of 1.90 for existing City sewer mains, the peak flow projected for the Project is 2,739,785 gpd (1,902.6 gpm).

- Offsite flows contributing to the proposed 21-inch sewer main in Warner Road will be determined during preliminary and final design of the sewer main. Based on the Project's peak flows through this proposed sewer main, it is anticipated that the 21inch sewer main will have a depth over diameter ratio (d/D) of 46.9% at a proposed slope of 0.0029 ft/ft. Assuming a peaking factor of 2.30 for existing lines, this d/D is reduced to 40.4%.
- Flows from the Project will be conveyed to the Greenfield Water Reclamation Plant (GWRP).

10.0 REFERENCES

City of Mesa. (2019). Engineering Procedure Manual: 2019 Engineering & Design Standards. 2019, Mesa, AZ

City of Mesa. (2018). 2018 Wastewater Master Plan Update. 2018, Mesa, AZ

Greey Pickett. (2019). *Mesa Urban Development - Conceptual Land Use Master Plan*. (September, 2019). Phoenix, AZ

APPENDIX A

FIGURES

U: \1800\1833\1833.0101 - Mesa-Casa Grande\REPORTS\WATER\SUB 06\Exhibits\A.3 - Vilage Exhibit.dwg

 = PROPOSED
= EXISTING
<= 8.0
<= 10.0
<= 12.0
<= 15.0
<= 18.0
<= 21.0
 <= 24.0
<= 42.0
<= 48.0
<= 54.0

	= PROPOSED
********	= EXISTING
	<= 8.0
	<= 10.0
	<= 12.0
	<= 15.0
	<= 18.0
	<= 21.0
	<= 24.0
	<= 42.0
	<= 48.0
	<= 54.0

	= PROPOSED
	= EXISTING
_	<= 8.0
	<= 10.0
	<= 12.0
	<= 15.0
	<= 18.0
	<= 21.0
	<= 24.0
	<= 42.0
	<= 48.0
	<= 54.0

	= PROPOSED
********	= EXISTING
_	<= 8.0
	<= 10.0
	<= 12.0
	<= 15.0
	<= 18.0
	<= 21.0
	<= 24.0
	<= 42.0
	<= 48.0
	<= 54.0

	= PROPOSED
	= EXISTING
_	<= 8.0
	<= 10.0
	<= 12.0
	<= 15.0
	<= 18.0
	<= 21.0
	<= 24.0
	<= 42.0
	<= 48.0
	<= 54.0

 = PROPOSED
 <= 8.0
<= 10.0
<= 12.0 <= 15.0
<= 18.0
 <= 21.0
 <= 24.0
<= 42.0
<= 48.0
<= 54.0

	= PROPOSED
********	= EXISTING
_	<= 8.0
	<= 10.0
	<= 12.0
	<= 15.0
	<= 18.0
	<= 21.0
	<= 24.0
	<= 42.0
	<= 48.0
	<= 54.0

 = PROPOSED = EXISTING
<= 8.0
 <= 10.0
 <= 12.0
<= 15.0
<= 18.0
 <= 21.0
 <= 24.0
<= 42.0
<= 48.0
<= 54.0

APPENDIX B

TABLES

Table B.1 - Wastewater Flows by Outfall

Hawes Crossing Mesa, Arizona October, 2019

Assigned Parcel Label	Zoning Category	Land Use ^{4,5}	Gross Area	Assumed Density	Assumed Dwelling Units	Commercial/Industrial Gross Area	Population	Average I	Daily Flow	Peaking Fcator	Peak	Flow
			(ac)	(du/ac) OUTFALL 1 - E	(du) XISTING MH-2827	(ac) 78 (Along Existing 42" Sev	ver in Elliot Ro	(gpd)	(gpm)		(gpd)	(gpm)
(1/2) A-3 C-2	RSL-4.0 RM-5	LMDR HDR	32.6 13.7	5.0 25.0	163 343	-	522 583	41,728 46,648	29.0 32.4	3.0 3.0	95,974 139,944	66.6 97.2
OF-1 (EX MH-28278) S	UBTOTAL:	46.3	-	506	0.0	1,105	88,376	61.4	3.0	265,128	184.1
B-7	RSL-2.5	MDR	4.5	OUTFALL 2 - E 10.0	45	9 (Along Existing 42" Sev -	ver in Elliot Ro	9,720	6.8	3.0	29,160	20.3
B-8 B-9	RSL-2.5 RSL-2.5	MDR MDR	4.5 5.3	10.0 10.0	45 53	-	122 143	9,720 11,448	6.8 8.0	3.0 3.0	29,160 34,344	20.3 23.9
B-10 B-11	RSL-2.5 RSL-2.5	MDR	6.7	10.0	67	-	143	11,448	8.0 10.1	3.0	34,344 43,416	30.2
B-12 B-13 B-14	RSL-2.5	MDR	6.7	10.0	67	-	181	14,472	10.1	3.0	43,416	30.2
C-3 C-4	RM-5 RM-5	HDR	4.9	25.0	123	-	209	14,472 16,728 16,728	11.6	3.0	50,184 50 184	34.9 34.9
D-3 D-4	MX MX	MIXED USE MIXED USE	18.6	12.0 12.0	112.0 59.0	9.3 4.9	224 118	30,010 15,810	20.8	3.0 3.0	90,030 47,430	62.5 32.9
D-5 D-6	MX MX	MIXED USE MIXED USE	9.7 7.0	12.0 12.0	59.0 42.0	4.9 3.5	118 84	15,810 11,270	11.0 7.8	3.0 3.0	47,430 33,810	32.9 23.5
OF-2 (EX MH-28279) S	UBTOTAL:	101.2	-	982	22.6	2,215	206,580	143.5	3.0	619,740	430.4
A-1	RS-6	LMDR	17.9	5.0	90	30 (Along Existing 42" Sev -	ver in Elliot Ro 288	23,040	16.0	3.0	69,120	48.0
A-2 B-1	RS-6 RSL-2.5	MDR MDR	13.2 5.4	5.0	54	-	211 146	16,896 11,664	11.7 8.1	3.0 3.0	50,688 34,992	35.2 24.3
B-2 B-3	RSL-2.5 RSL-2.5	MDR MDR	5.4 7.1	10.0	54 71 71	-	146 192	11,664 15,336	8.1 10.7	3.0	34,992 46,008	24.3 32.0
B-4 B-5 B-6	RSL-2.5 RSL-2.5	MDR MDR	7.1	10.0	71 71 81	-	192	15,336	10.7	3.0	46,008	32.0
C-1 OF-3 (RM-5	HDR UBTOTAL:	7.4	25.0	185 743	- 0.0	315 1.899	25,160	17.5	3.0	75,480	52.4 316.5
			7017	OUTFALL 4 - E	XISTING MH-2828	32 (Along Existing 42" Sev	ver in Elliot Ro	()	103.5	5.0	455,764	510.5
D-1 D-2	MX MX	MIXED USE MIXED USE	7.9 16.6	12.0 12.0	48 100	4.0 8.3	96 200	12,880 26,790	8.9 18.6	3.0 3.0	38,640 80,370	26.8 55.8
OF-4 (EX MH-28282) S	UBTOTAL:	24.5	-	148	12.3	296	39,670	27.5	3.0	119,010	82.6
D-7	MX	MIXED USE	17.9	OUTFALL 5 - E 12.0	108 xISTING MH-2828	9.0 9.0	ver in Elliot Ro 216	28,980	20.1	3.0	86,940	60.4
D-8 OF-5 (MX E X MH-28284) S	MIXED USE	26.1 44.0	- 12.0	157 265	13.1 22.1	314 530	42,150 71,130	29.3 49.4	3.0 3.0	126,450 213,390	87.8 148.2
F-1	IC/GC		18.0	OUTFALL 6 - E	XISTING MH-2828	6 (Along Existing 42" Sev	ver in Elliot Ro	23.400	16 3	3.0	70 200	<u>48 8</u>
OF-6 (EC/GC EX MH-28286) S	UBTOTAL:	18.0	-	0	18.0	0	23,400	16.3	3.0	70,200	48.8
F-7	LC/GC	COMMERCIAL	13.7	OUTFALL 7 - E -	XISTING MH-2758 -	31 (Along Existing 42" Sev 13.7	ver in Elliot Ro -	oad) 17,810	12.4	3.0	53,430	37.1
OF-7 (EX MH-27581) S	UBTOTAL:	13.7	-	0	13.7	0	17,810	12.4	3.0	53,430	37.1
D-9	MX	MIXED USE	10.7	OUTFALL 8 - E 12.0	65	1 (Along Existing 42" Sev 5.4	ver in Elliot Ro 130	ad) 17,420	12.1	4.0	52,260	36.3
OF-8 (EX MH-28291) S	UBTOTAL:	10.7	-	65	5.4	130	17,420	12.1	3.0	52,260	36.3
(1/2) A-3	RSL-4.0	LMDR	32.6	5.0	VIH-25 (Along Exis	sting 54" Sewer at Roose -	522	41,728	29.0	3.0	95,974	66.6
A-4 A-5 B-15	RSL-4.0 RSL-2.5	LMDR	15.9 15.9 14 5	5.0	80 80 145	-	256	20,480	14.2 14.2 21.8	3.0	61,440 61,440	42.7
B-16 B-17	RSL-2.5 RSL-2.5	MDR MDR	5.4	10.0	54	-	146 146	11,664 11 664	8.1	3.0	34,992 34 992	24.3
B-18 B-19	RSL-2.5 RSL-2.5	MDR MDR	6.5 4.9	10.0 10.0	65 49	-	176 132	14,040 10,584	9.8	3.0 3.0	42,120 31,752	29.3 22.1
B-20 B-21	RSL-2.5 RSL-2.5	MDR MDR	4.9 21.0	10.0 10.0	49 210	-	132 567	10,584 45,360	7.4	3.0 3.0	31,752 136,080	22.1 94.5
B-22 B-23	RSL-2.5 RSL-2.5	MDR MDR	13.2 7.6	10.0 10.0	132 76	-	356 205	28,512 16,416	19.8 11.4	3.0 3.0	85,536 49,248	59.4 34.2
B-24 B-25	RSL-2.5 RSL-2.5	MDR MDR	4.8 28.3	10.0 10.0	48 283	-	130 764	10,368 61,128	7.2 42.5	3.0 3.0	31,104 183,384	21.6 127.4
C-5 C-6	RM-5 RM-5	HDR HDR	5.4 5.4	25.0 25.0	135 135	-	230 230	18,360 18,360	12.8 12.8	3.0 3.0	55,080 55,080	38.3 38.3
D-10 D-11	MX MX	MIXED USE MIXED USE	10.6 14.0	12.0 12.0	64 84	5.3 7.0	128 168	17,130 22,540	11.9 15.7	3.0 3.0	51,390 67,620	35.7 47.0
E-1 E-2	u		68.9 41.0	-	-	41.0	-	53,300	62.2 37.0	3.0	268,710 159,900	186.6
E-5 E-4 E-5			3.7	-	-	3.7	-	4,810	3.3	3.0	14,430 49.140	10.0 34.1
E-6 E-7		LIGHT INDUSTRIAL	15.0 15.0	-	-	15.0 15.0	-	19,500 19,500 19,500	13.5	3.0 3.0	58,500	40.6
E-8 E-9	LI	LIGHT INDUSTRIAL	26.6 18.4	-	-	26.6 18.4	-	34,580 23,920	24.0 16.6	3.0 3.0	103,740 71,760	72.0 49.8
F-2 F-3	LC/GC LC/GC	COMMERCIAL COMMERCIAL	13.8 16.9	-	-	13.8 16.9	-	17,940 21,970	12.5 15.3	3.0 3.0	53,820 65,910	37.4 45.8
F-4 F-5	LC/GC LC/GC	COMMERCIAL COMMERCIAL	24.4 20.8	-	-	24.4 20.8	-	31,720 27,040	22.0 18.8	3.0 3.0	95,160 81,120	66.1 56.3
F-6 F-8	LC/GC LC/GC	COMMERCIAL	21.2 13.9	-	-	21.2 13.9	-	27,560 18,070	19.1 12.5	3.0 3.0	82,680 54,210	57.4 37.6
G-1 OF-9	OC (EX MH-25) SUI	OFFICE BTOTAL:	5.8 535.5	-	- 1,906	5.8 331.5	4,934	7,540 825,678	5.2 573.4	3.0 3.0	22,620 2,477,034	15.7 1,720.2
	PARK/OPEN SPA	ACE	51.7	-	PARCELS WITHOU	JT WASTEWATER DEMAN	NDS -	-		-	_	
	DTHER/STREETS/	ETC.	207.5	-	-	-	-	-	-	-	-	-
				V	ASTEWATER DEN	AND TOTALS FOR NEW	PIPES					
	GRAND TOTAL	⁶ :	1,131.8	-	4,615	425.6	11,109	1,441,992	1,001.4	3.0	4,325,976	3,004.2
Notes:	Demand Factors	<u>s:</u>					Density:		Population Fac	tor:		
	Low Density Res Low Density Res	sidential (RR): sidential (ER):		200 240	gal/dwelling unit, gal/dwelling unit,	/day /day	< 1 1 - 2	du/acre du/acre	2.5 3.0	Persons/du Persons/du		
	Medium Density	y Residential (LDR): y Residential (LMDR):		240 256	gal/dwelling unit, gal/dwelling unit,	/day /day	2 - 4 4 - 6	du/acre du/acre	3.0 3.2	Persons/du Persons/du		
	High Density Re	y Residential (MDR): sidential (MHDR):		216 160	gal/dwelling unit, gal/dwelling unit,	/day /day /day	6 - 10 10 - 15	du/acre du/acre	2.7	Persons/du Persons/du		
	High Density Co	ndominium:		136	gal/dwelling unit,	/day	15 +	uu/acre	1.7	Persons/du Persons/du		
	Office ³ :			1,300	gal/acre/day							
	Research and D	evelopment:		1,300 1,300	банопу/acre/day gallons/acre/day							
	Peaking Factors	<u>:</u> ned)		Existing Lines		New Linco						
	< 1.0 1.0 - 10			2.30 1 90		3.00 2.50						
	10 - 20 20 - 30			1.50 1.70 1.60		2.30 2.30 2.10						
	30 - 40 40 - 50			1.50 1.40		2.00 1.90						
	> 50			1.30		1.75						
	(1) Flow factors (2) Values show	from the Engineering Pro n include inside and outsi	ide water use.	I - Engineering	& Design Standa	rds (City of Mesa, 2017).						
	(3) Commercial/(4) Mixed Use ca	Office demand factor ass alculated as 1/2 residenti	sumed from sur al and 1/2 com	rrounding tow mercial.	ns as City of Mesa	standard is determined b	oy actual squa	re tootage of bui	lding.			
	(6) Grand Total	represents all flows gene B shows peaking factors	rated by the Pr for the outfalls	oject through	the proposed was the proposed was	tewater network. Flows a	are additive of	all outfalls comb	pined. Table B.2			

Table B.2 - Wastewater Flow Calculations for Existing Sewer Network Hawes Crossing Mesa, Arizona

October, 2019

Outfall (Manhole)	Gross Area	Assumed Density	Assumed Dwelling Units	Commercial/Industrial Gross Area	Population	Average I	Daily Flow	Peaking Fcator	eaking Fcator Peak Flow						
. ,	(ac)	(du/ac)	(du)	(ac)	1 .	(gpd)	(gpm)		(gpd)	(gpm)					
	. /														
			OUTFALLS FLOW	VING TO EXISTING 42" SEW	/ER LINE IN ELL	IOT ROAD									
OF-1 (EX MH-28278):	46.3	-	506	-	1,105	88,376	61.4	3.0	265,128	184.1					
OF-2 (EX MH-28279):	101.2	-	982	22.6	2,215	206,580	143.5	3.0	619,740	430.4					
OF-3 (EX MH-28280):	78.7	-	743	-	1.899	151,928	105.5	3.0	455,784	316.5					
OF-4 (EX MH-28282):	24.5	-	148	12.3	296	39,670	27.5	3.0	119.010	82.6					
OF-5 (FX MH-28284):	44.0	-	265	22.1	530	71 130	49.4	3.0	213 390	148.2					
OF-6 (EX MH-28286):	180 200 22.1 330 71,130 45.4 3.0 213,330 190 10 120 120 120 120 120 120 120 120 120							18.8							
OF-7 (EX MH-27581):	13.7	_	_	13.7	-	17 910	10.5	3.0	F2 420	40.0					
OF-8 (EX MH-28291):	10.7	-	65	E /	120	17,810	12.4	3.0	53,430	53,430 37.1					
01-8 (EX WIT-28251).	10.7	-	05	5.4	150	17,420	12.1	5.0	52,200	50.5					
	F 25 F	OUTFALLS F		221 F	4 024			2.0	2 477 024	1 720 2					
OF-9 (EX MH-25):	535.5	-	1,906	331.5	4,934	825,678	573.4	3.0	2,477,034	1,720.2					
			PARC	ELS WITHOUT WASTEWAT	ER DEMANDS	1	1	r	r	1					
PARK/OPEN SPACE	51.7	-	-	-	-	-	-	-	-	-					
OTHER/STREETS/ETC.	207.5	-	-	-	-	-	-	-	-	-					
		TOTAL W	ASTEWATER FLO	WS DOWNSTREAM OF OU	TFALLS IN EXIS	TING PIPE NETV	VORK								
			-					-	-						
DOWNSTREAM OF OUTFALLS 1-8 ³ :	337.1	-	2,709	94.1	6,175	616,314	428.0	2.3	1,417,522	984.4					
DOWNSTREAM OF OUTFALL 9 ⁴ :	1131.8	-	4,615	425.6	11,109	1,441,992	1,001.4	1.9	2,739,785	1,902.6					
Lemand Factors: Low Density Residential (RR): Low Density Residential (ER): Medium Density Residential (LMDR): Medium Density Residential (LMDR): Medium Density Residential (MDR): High Density Residential (MHDR): High Density Residential (HDR): High Density Condominium: Commercial ² : Office ² : Industrial: Research and Development: <u>Peaking Factors:</u>			200 240 256 160 136 1,300 1,300 1,300 1,300	gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/dwelling unit/day gal/acre/day gal/acre/day gallons/acre/day gallons/acre/day		<1 1 - 2 2 - 4 4 - 6 6 - 10 10 - 15 15 +	du/acre du/acre du/acre du/acre du/acre du/acre	2.5 3.0 3.2 2.7 2.0 1.7 1.7	Persons/du Persons/du Persons/du Persons/du Persons/du Persons/du Persons/du						
Average Flow (mgd < 1.0 1.0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 > 50 (1) Flow factors froi (2) Commercial/Off (3) Flows downstrei (4) Flows downstrei sewer line runni	Existing Lines 2.30 1.90 1.70 1.60 1.50 1.40 1.30 re Manual - Engine m surrounding tov into the existing 4 ows from Outfalls eastern side of th	ering & Design Standards (0 vns as City of Mesa standar 12" sewer line in Elliot Road 1-8 as well as Outfall 9, as a e Roosevelt Canal.	New Lines 3.00 2.50 2.30 2.10 2.00 1.90 1.75 City of Mesa, 2(d is determined I just east of So: all flows for the	017). d by actual squa ssaman Road. • Project eventua	re footage of bu	ilding. the existing 54"									

Table B.3 - Wastewater Flow Calculations and Land Use Summary

Hawes Crossing

Mesa, Arizona

Notes:

October, 2019

A RS B C D D D D D D D D D D D D D D D D D D	S-6 & RSL-4.0 RSL-2.5 RM-5 MX LI LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I	LMDR MDR MHDR MIXED USE LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	(ac) 128.1 203.1 41.7 148.8 202.4 142.7 5.8 51.7 207.5	(du/ac) 5.0 10.0 25.0 12.0 - -	(du) 642 2,031 1,044 898 -	(ac) - - - 74.7	2,054 5,484 1,775	(gpd) 164,352 438,696 141 984	(gpm) 114.1 304.7	3.0 3.0	(gpd) 493,056 1,316,088	(gpm) 342.4
A RS B C D D E F O TI G P/ OTI GRAND 1 Iotes:	S-6 & RSL-4.0 RSL-2.5 RM-5 MX LI LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (Existing	LMDR MDR MHDR MIXED USE LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	128.1 203.1 41.7 148.8 202.4 142.7 5.8 51.7 207.5	5.0 10.0 25.0 12.0 - -	642 2,031 1,044 898 -	- - - 74.7	2,054 5,484 1,775	164,352 438,696 141 984	114.1 304.7	3.0 3.0	493,056 1,316,088	342.4
B C D E F G OTI GRAND GRAND	RSL-2.5 RM-5 MX LI LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I	MDR MHDR MIXED USE LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	203.1 41.7 148.8 202.4 142.7 5.8 51.7 207.5	10.0 25.0 12.0 - -	2,031 1,044 898 -	- - 74.7	5,484 1,775	438,696 141 984	304.7	3.0	1.316.088	0110
C D D E F G P/ OTI GRANI	RM-5 MX LI LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I	MHDR MIXED USE LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	41.7 148.8 202.4 142.7 5.8 51.7 207.5	25.0 12.0 - -	1,044 898 -	- 74.7	1,775	141 984	00.0			914.0
D E F G OTI GRANI GRANI Iotes:	MX LI LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I TOTAL (Existing	MIXED USE LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	148.8 202.4 142.7 5.8 51.7 207.5	12.0 - - -	898 -	74.7		1+1,50+	98.6	3.0	425,952	295.8
E F G P/ OTI GRANI GRANI Iotes:	LI LC/GC OC PARK/OPEN SPAG THER/STREETS/E ID TOTAL (New I TOTAL (Existing	LIGHT INDUSTRIAL COMMERCIAL OFFICE CE TC. Pipes):	202.4 142.7 5.8 51.7 207.5	-	-	222.4	1,796	240,790	167.2	3.0	722,370	501.6
F G P, OT. GRANI GRANI Iotes:	LC/GC OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I TOTAL (Existing	COMMERCIAL OFFICE EE TC. Pipes):	142.7 5.8 51.7 207.5	-		202.4	-	263.120	182.7	3.0	789.360	548.2
G P, OT GRANI GRANI Iotes:	OC PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New 1	OFFICE CE TC. Pipes):	5.8 51.7 207.5	-	-	142.7	-	185.510	128.8	3.0	556,530	386.5
GRAND	PARK/OPEN SPAC THER/STREETS/E ID TOTAL (New I TOTAL (Existing	CE TC. Pipes):	51.7 207.5		-	5.8	-	7.540	5.2	3.0	22,620	15.7
OT GRANI GRAND	THER/STREETS/E ID TOTAL (New I TOTAL (Existing	TC. Pipes):	207.5	-	-	-	-	-	-	-	-	-
GRAND GRAND	ID TOTAL (New)	Pipes):		-	-	-	-	-	-	-	-	-
GRAND	TOTAL (Existing		1 131 8	-	4 615	425.6	11 109	1 441 992	1 001 4	3.00	4 325 976	3 004 2
GRAND	TOTAL (Existing		1,131.0		4,015	425.0	11,105	1,441,552	1,001.4	5.00	4,323,370	3,004.2
lotes:	TOTAL (LAISting	Rines) ⁶	1 131 8	_	4 615	425.6	11 109	1 441 992	1 001 4	1 90	2 739 785	1 902 6
lotes:		, ripesj .	1,131.0	-	4,015	423.0	11,105	1,441,552	1,001.4	1.50	2,735,785	1,502.0
Dom												
Dell	mand Factors:						Density:		Population Fac	tor:		
Low	v Density Reside	ntial (RR):		200	gal/dwelling unit/	day	< 1	du/acre	2.5	Persons/du		
Low	Low Density Residential (ER): 240 gal/dwelling unit/day					day	1 - 2	du/acre	3.0	Persons/du		
Med	Medium Density Residential (LDR): 240 gal/dwelling unit/day					day	2 - 4	du/acre	3.0	Persons/du		
Med	dium Density Re	sidential (LMDR):	256 gal/dwelling unit/day			day	4 - 6	du/acre	3.2	Persons/du		
Med	dium Density Re	sidential (MDR):	216 gal/dwelling unit/day			day	6 - 10	du/acre	2.7	Persons/du		
High	h Density Reside	ential (MHDR):		160	gal/dwelling unit/	day	10 - 15	du/acre	2.0	Persons/du		
High	h Density Reside	ential (HDR):		136	gal/dwelling unit/	day	15 +	du/acre	1.7	Persons/du		
High	h Density Condo	ominium:		136	gal/dwelling unit/	day			1.7	Persons/du		
Com	nmercial [°] :			1,300	gal/acre/day							
Offic	ice ³ :			1,300	gal/acre/day							
Insti	titutional:			1,300	gallons/acre/day							
Indu	ustrial:			1,300	gallons/acre/day							
Rese	earch and Devel	lopment:		1,300	gallons/acre/day							
Scho	iool (w/ Cafeteria	a)		50	gpd/student							
Peal	aking Factors:											
Aver	erage Flow (mgd))	I	Existing Lines		New Lines						
< 1.0	.0			2.30		3.00						
1.0 -	- 10			1.90		2.50						
10 -	- 20			1.70		2.30						
20 -	- 30			1.60		2.10						
30 -	- 40			1.50		2.00						
40 -	- 50			1.40		1.90						
> 50	0			1.30		1.75						

(5) Technology Mixed Use calculated as 1/2 Commercial/Office and 1/2 Research and Development

(6) Total in existing pipes constitutes all flows downstream of Outfall #8 in the existing 54-inch sewer main along the Roosevelt Canal.

Table B.4 - Wastewater Flow Calculations by Village Hawes Crossing

Mesa, Arizona October, 2019

Assigned Parcel	Zoning	Land Use ^{4,5}	Gross Area	Density	Dwelling Units	Gross Area	Population	Average	Daily Flow	Peaking Fcator	Peak	Flow
Label	Category		(ac)	(du/ac)	(du)	(ac)		(gpd)	(gpm)		(gpd)	(gpm)
						VILLAGE 1	1			1		
Α-1 Δ-2	RS-6	LMDR	17.9	5.0	90	-	288	23,040	16.0	3.0	69,120 50,688	48.0
B-1	RSL-2.5	MDR	5.4	10.0	54	-	146	11,664	8.1	3.0	34,992	24.3
B-2	RSL-2.5	MDR	5.4	10.0	54	-	146	11,664	8.1	3.0	34,992	24.3
B-3	RSL-2.5	MDR	7.1	10.0	71	-	192	15,336	10.7	3.0	46,008	32.0
B-4 B-5	RSL-2.5 RSL-2.5	MDR	7.1	10.0	71	-	192	15,336	10.7	3.0	46,008	32.0
B-6	RSL-2.5	MDR	8.1	10.0	81	-	219	17,496	12.2	3.0	52,488	36.5
C-1	RM-5	HDR	7.4	25.0	185	-	315	25,160	17.5	3.0	75,480	52.4
D-1	MX Village 1 Subto	MIXED USE	7.9	12.0	48	4.0	96	12,880	8.9	3.0	38,640	26.8
	Village 1 Subto		80.0	-	751	VILLAGE 2	1,995	104,000	114.5	5.0	494,424	545.4
A-3 (60%)	RSL-4.0	LMDR	39.1	5.0	196	-	626	50.074	34.8	3.0	150.221	104.3
A-4 (60%)	RSL-4.0	LMDR	9.5	5.0	48	-	154	12,288	8.5	3.0	36,864	25.6
A-5 (60%)	RSL-4.0	LMDR	9.5	5.0	48	-	154	12,288	8.5	3.0	36,864	25.6
B-7	RSL-2.5	MDR	4.5	10.0	45	-	122	9,720	6.8	3.0	29,160	20.3
B-8	RSL-2.5	MDR	5.3	10.0	53	-	143	11,448	8.0	3.0	34,344	23.9
B-10	RSL-2.5	MDR	5.3	10.0	53	-	143	11,448	8.0	3.0	34,344	23.9
B-11	RSL-2.5	MDR	6.7	10.0	67	-	181	14,472	10.1	3.0	43,416	30.2
B-12 B-13	RSL-2.5 RSL-2.5	MDR	6.7	10.0	67	-	181	14,472	10.1	3.0	43,416	30.2
B-14	RSL-2.5	MDR	6.7	10.0	67	-	181	14,472	10.1	3.0	43,416	30.2
B-15 (50%)	RSL-2.5	MDR	7.3	10.0	73	-	196	15,660	10.9	3.0	46,980	32.6
C-2	RIVI-5 RM-5	HDR	13.7	25.0	343	-	209	46,648	32.4	3.0	139,944	97.2 34.9
C-4	RM-5	HDR	4.9	25.0	123	-	209	16,728	11.6	3.0	50,184	34.9
D-3	MX	MIXED USE	18.6	12.0	112	9.3	224	30,010	20.8	3.0	90,030	62.5
D-4	MX	MIXED USE	9.7	12.0	59	4.9	118	15,810	11.0	3.0	47,430	32.9
D-5	MX	MIXED USE	9.7	12.0	42	4.9	84	15,810	7.8	3.0	47,430	32.9
	Village 2 Subto	tal:	180.4	-	1,689	22.6	3,927	343,538	238.6	3.0	1,030,613	715.7
						VILLAGE 3						
D-2	MX	MIXED USE	16.6	12.0	100	8.3	200	26,790	18.6	3.0	80,370	55.8
	village 3 Subto	tal:	16.6	12.0	100	8.3	200	26,790	18.6	3.0	80,370	55.8
D DF	סכו ז ד	MDD	1 0 0	10.0	202	VILLAGE 4	764	61 130	40 F	2.0	103 30 4	177 4
в-25 F-4	LC/GC	COMMERCIAI	28.3	- 10.0	283	- 24.4	- /04	01,128 31.720	42.5	3.0	183,384 95.160	127.4 66.1
	Village 4 Subto	tal:	52.7	-	283	24.4	764	92,848	64.5	3.0	278,544	193.4
						VILLAGE 5						
B-21	RSL-2.5	MDR	21.0	10.0	210	-	567	45,360	31.5	3.0	136,080	94.5
B-23	RSL-2.5	MDR	7.6	10.0	76	-	205	16,416	11.4	3.0	49,248	34.2
F-3	LC/GC	COMMERCIAL	4.8	-	- 40	16.9	-	21,970	15.3	3.0	65,910	45.8
F-4	LC/GC	COMMERCIAL	20.8	-	-	20.8	-	27,040	18.8	3.0	81,120	56.3
	Village 5 Subto	tal:	71.1	-	334	37.7	902	121,154	84.1	3.0	363,462	252.4
	-				-	VILLAGE 6	1		1			
A-3 (40%)	RSL-4.0		26.1	5.0	130	-	417	33,382	23.2	3.0	100,147	69.5
A-4 (40%)	RSL-4.0	LMDR	6.4	5.0	32	-	102	8,192	5.7	3.0	24,576	17.1
B-15 (50%)	RSL-2.5	MDR	7.3	10.0	73	-	196	15,660	10.9	3.0	46,980	32.6
B-16	MDR	MDR	5.4	10.0	54	-	146	11,664	8.1	3.0	34,992	24.3
B-17 B-18	MDR	MDR	5.4 6.5	10.0	65	-	146	11,664	8.1 9.8	3.0	34,992 42 120	24.3
B-19	MDR	MDR	4.9	10.0	49	-	132	10,584	7.4	3.0	31,752	22.1
B-20	MDR	MDR	4.9	10.0	49	-	132	10,584	7.4	3.0	31,752	22.1
B-22	MDR	MDR	13.2	10.0	132	-	356	28,512	19.8	3.0	85,536	59.4
C-5 C-6	RM-5	HDR	5.4	25.0	135	-	230	18,360	12.8	3.0	55,080	38.3
F-2	LC/GC	COMMERCIAL	13.8	-	-	13.8	-	17,940	12.5	3.0	53,820	37.4
G-1	OC	OFFICE	5.8	-	-	5.8	-	7,540	5.2	3.0	22,620	15.7
	Village 6 Subto	tal:	116.8	-	940	19.6	2,365	214,674	149.1	3.0	644,023	447.2
D.7	MAX		17.0	12.0	100	VILLAGE 7	210	20.000	20.4	2.0	06.040	60.4
D-7	MX	MIXED USE	26.1	12.0	108	13.1	314	42,150	20.1	3.0	126.450	87.8
E-1	LI	LIGHT INDUSTRIAL	68.9	-	-	68.9	-	89,570	62.2	3.0	268,710	186.6
F-1	LC/GC	COMMERCIAL	18.0	-	-	18.0	-	23,400	16.3	3.0	70,200	48.8
	Village / Subto	tal:	130.9	-	265	109.0	530	184,100	127.8	3.0	552,300	383.5
DA	MY		10.7	12.0	65		120	17 420	12.1	4.0	E2 260	26.2
D-10	MX	MIXED USE	10.7	12.0	64	5.3	130	17,420	11.9	6.0	51,390	35.7
D-11	MX	MIXED USE	14.0	12.0	84	7.0	168	22,540	15.7	7.0	67,620	47.0
E-2	LI	LIGHT INDUSTRIAL	41.0	-	-	41.0	-	53,300	37.0	3.0	159,900	111.0
E-3 E-4	LI	LIGHT INDUSTRIAL	3.7	-	-	3.7	-	1,560	1.1	3.0	4,680	3.3
E-5	LI	LIGHT INDUSTRIAL	12.6	-	-	12.6		16,380	11.4	3.0	49,140	34.1
E-6	LI	LIGHT INDUSTRIAL	15.0	-	-	15.0	-	19,500	13.5	3.0	58,500	40.6
E-7 F-8	LI 11	LIGHT INDUSTRIAL	15.0 26.6	-	-	15.0 26.6	-	19,500	13.5 24.0	3.0	58,500	40.6
E-9	LI	LIGHT INDUSTRIAL	18.4	-	-	18.4	-	23,920	16.6	3.0	71,760	49.8
F-6	LC/GC	COMMERCIAL	21.2	-	-	21.2	-	27,560	19.1	3.0	82,680	57.4
F-7	LC/GC	COMMERCIAL	13.7	-	-	13.7	-	17,810	12.4	3.0	53,430	37.1
г-ð	Village 8 Subto	tal:	217.6	36.0	213	200.0	426	294.080	204.2	5.0 52.0	54,210 882.240	37.6 612.7
	5							- ,			,	
	PARK/OPEN SPA	ACE	51.7	-	-	-	-	-	-	-	-	-
	UTHER/STREETS/	EIC.	207.5	-	-	-	-	-	-	-	-	-
	GRAND TOTA	L:	1,131.8	-	4,615	425.6	11,109	1,441,992	1,001.4	3.0	4,325,976	3,004.2
Notes:	Domand Factors						Doncitur		Dopulation Fac	ton		
	Low Density Res	<u>'-</u> idential (RR):		200	gal/dwelling unit,	/day	<1	du/acre	2.5	5 Persons/du		
	Low Density Res	idential (ER):		240	gal/dwelling unit,	/day	1 - 2	du/acre	3.0) Persons/du		
	Medium Density	Residential (LDR):		240	gal/dwelling unit,	/day	2 - 4	du/acre	3.0) Persons/du		
	Medium Density	Residential (LMDR):		256	gal/dwelling unit,	/day	4-6 6-10	du/acre	3.2	2 Persons/du 7 Persons/du		
	High Density Res	sidential (MHDR):		160	gal/dwelling unit	/day	10 - 15	du/acre	2.0) Persons/du		
	High Density Res	sidential (HDR):		136	gal/dwelling unit,	/day	15 +	du/acre	1.7	Persons/du		
	High Density Cor	ndominium:		136	gal/dwelling unit,	/day			1.7	7 Persons/du		
	Commercial ³ :			1,300	gal/acre/day							
	Uttice': Industrial:			1,300	gal/acre/day							
	Research and De	evelopment:		1,300	gallons/acre/dav							
				_,505	,,,							
	Peaking Factors	0										
	Average Flow (m	nga)		Existing Lines		New Lines						
	1.0 - 10			2.30		3.00						
	10 - 20			1.70		2.30						
	20 - 30			1.60		2.10						
	40 - 50			1.50 1.40		2.00 1 90						
	> 50			1.30		1.75						
	(1) D	and faces also and the	Danss		aria - 0 - 1	adauda (Chu China 💷 🗄	\ \					
	(1) Demand fact (2) Values show	ors from the Engineering n include inside and out	ide water use	anuai - Engine	ering & Design Sta	muarus (City of Mesa, 2017)	J					
l	(3) Commercial/	Office demand factor as	sumed from su	irrounding tov	vns as City of Mes	a standard is determined by	actual square	footage of build	ding			
	(4) Urban Mixed	Use calculated as 1/2 re	sidential and	L/2 commercia	al	,						
	(5) Technology N	Aixed Use calculated as	1/2 Commercia	al/Office and 1	/2 Research and I	Development						
1												

APPENDIX C

EXCERPTS FROM:

CITY OF MESA 2018 WASTEWATER MASTER PLAN UPDATE (CITY OF MESA, 2018)

March 2018

APPENDIX D

HYDRAULIC MODEL RESULTS

AVERAGE DAY FLOW

- 1. **Master Manhole Report** This provides detailed information such as the rim elevation and structure depth of each manhole within the system.
- 2. **Master Gravity Pipe Report** This provides detailed information such as the velocity, capacity, and percent full in each pipe in the system. Please note that the "Average Velocity" presented in the Master Gravity Pipe Report is actual velocity and not full flow velocity.
- 3. **Master Outlet Report** This provides the invert, structure depth and flow at the outlet of the system.

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Manhole Table

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Grade Hydraulic Grade In) Line (Out)			
	(ft)	(ft)	(ft)		(ft)	(ft)			
MH-1	1,380.00	1,372.33	7.67	15,336	1,372.42	1,372.42			
MH-2	1,380.00	1,371.26	8.74	15,336	1,371.34	1,371.34			
MH-3	1,375.07	1,367.30	7.77	15,336	1,367.37	1,367.37			
MH-4	1,373.32	1,365.56	7.77	15,336	1,365.64	1,365.64			
MH-5	1,376.61	1,364.57	12.04	32,832	1,364.68	1,364.68			
MH-6	1,374.45	1,362.36	12.09	59,832	1,362.52	1,362.52			
MH-7	1,369.00	1,360.01	8.99	71,496	1,360.19	1,360.19			
MH-8	1,368.00 1,359.27		8.73	88,392	1,359.47	1,359.47			
MH-9	1,367.02	1,358.75	8.27	88,392	1,358.92	1,358.92			
MH-10	1,366.28	1,356.71	9.57	128,888	1,356.95	1,356.95			
MH-11	1,363.00	1,355.07	7.93	151,928	1,355.33	1,355.33			
MH-12	1,362.14	1,353.90	8.23	151,928	1,354.17	1,354.17			
MH-13	1,362.14	1,352.72	9.41	151,928	1,352.93	1,352.93			
MH-14	1,378.00	1,370.33	7.67	17,496	1,370.42	1,370.42			
MH-15	1,380.00	1,368.74	11.26	17,496	1,368.83	1,368.83			
MH-16	1,369.13	1,361.46	7.67	11,520	1,361.53	1,361.53			
MH-17	1,366.19	1,359,74	6.45	11,520	1,359.81	1,359.81			
MH-18	1.364.69	1.358.31	6.38	23.040	1.358.41	1.358.41			
MH-19	1,363.29	1,356.56	6.73	23,040	1,356.66	1,356.66			
MH-20	1.386.21	1.378.55	7.67	8,448	1.378.60	1.378.60			
MH-21	1.375.00	1.367.23	7.77	8,448	1.367.29	1.367.29			
MH-22	1.371.00	1.363.23	7.77	16.896	1.363.32	1.363.32			
MH-23	1.369.35	1.361.58	7.77	16.896	1.361.66	1.361.66			
MH-24	1.373.00	1.365.33	7.67	11.664	1.365.39	1.365.39			
MH-25	1.369.86	1.362.09	7.77	11.664	1.362.16	1.362.16			
MH-26	1.376.85	1.369.18	7.67	11.664	1.369.25	1.369.25			
MH-27	1.375.37	1,367,61	7.77	11.664	1.367.68	1.367.68			
MH-28	1.373.00	1.365.33	7.67	15.336	1.365.42	1.365.42			
MH-29	1.373.00	1.364.35	8.65	15,336	1.364.42	1.364.42			
MH-30	1.374.02	1.366.36	7.67	15.336	1.366.43	1,366.43			
MH-31	1.371.61	1.363.85	7.77	15.336	1.363.93	1,363.93			
MH-32	1.373.00	1.365.33	7.67	25,160	1.365.42	1.365.42			
MH-33	1.366.00	1.358.23	7.77	25,160	1.358.34	1.358.34			
MH-34	1.372.83	1.365.06	7.77	16.896	1.365.15	1,365.15			
MH-35	1.378.07	1.369.93	8.14	15.336	1.370.00	1.370.00			
MH-36	1.373.00	1.361.24	11.76	59,832	1.361.40	1.361.40			
MH-37	1.366.92	1.356.01	10.90	128,888	1.356.26	1.356.26			
MH-38	1.368.50	1.360.83	7.67	12,880	1.360.91	1,360.91			
MH-39	1.367.30	1.359.53	7.77	12,880	1.359.61	1.359.61			
MH-40	1.368.12	1.358.22	9.91	12,880	1.358.29	1.358.29			
MH-41	1.369.70	1.357.37	12.33	39.670	1.357.50	1.357.50			
MH-42	1.375.00	1.367.33	7.67	26,790	1.367.44	1.367.44			
MH-43	1.374.04	1.365.98	8.05	26,790	1.366.09	1.366.09			
MH-44	1.371.70	1.363.93	7.77	26,790	1,364.04	1,364.04			
MH-45	1.353.27	1,343,99	9.28	88,376	1,344,19	1,344,19			
MH-46	1.355.14	1.345.74	9,40	41.728	1,345,88	1.345.88			
MH-47	1.355.26	1,347,49	7.77	41.728	1,347,63	1,347,63			
MH-48	1,356 56	1,348,79	7 77	31 296	1,348.91	1,348,91			
MH-49	1,357.70	1,349.93	7.77	31,296	1,350.05	1,350.05			
19-1003_1833 SewerCAD (SUB 06).stsw Hawes Crossing (Mesa, AZ) M. Je 10/8/2019 HILGARTWILSON, LLC. Page 1									

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Manhole Table

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade	Hydraulic Grade			
	(ft)	(ft)	(ft)	(9=1,==1,)	(ft)	(ft)			
MH-50	1,358.81	1,351.04	7.77	20,864	1,351.14	1,351.14			
MH-51	1,360.09	1,352.32	7.77	20,864	1,352.42	1,352.42			
MH-52	1,361.94	1,354.17	7.77	10,432	1,354.24	1,354.24			
MH-53	1,363.69	1,355.92	7.77	10,432	1,355.99	1,355.99			
MH-54	1,372.00	1,362.24	9.76	44,726	1,362.38	1,362.38			
MH-55	1,369.11	1,361.08	8.03	44,726	1,361.21	1,361.21			
MH-56	1,368.04	1,359.11	8.93	89,480	1,359.32	1,359.32			
MH-57	1,368.72 1,357.74		10.97	89,480	1,357.95	1,357.95			
MH-58	1,366.00	1,352.80	13.20	119,762	1,353.03	1,353.03			
MH-59	1,364.52	1,351.50	13.02	131,210	1,351.70	1,351.70			
MH-60	1,361.39	1,350.15	11.24	157,130	1,350.42	1,350.42			
MH-61	1,358.00	1,348.87	9.13	166,850	1,349.09	1,349.09			
MH-62	1,355.11	1,347.18	7.93	176,570	1,347.46	1,347.46			
MH-63	1,357.00	1,346.29	10.71	206,580	1,346.60	1,346.60			
MH-64	1,366.00	1,358.33	7.67	15,005	1,358.42	1,358.42			
MH-65	1,367.32	1,357.03	10.28	15,005	1,357.10	1,357.10			
MH-66	1,362.15	1,354.38	7.77	30,010	1,354.48	1,354.48			
MH-67	1,358.75	1,350.98	7.77	30,010	1,351.08	1,351.08			
MH-68	1,369.67	1,362.00	7.67	15,810	1,362.07	1,362.07			
MH-69	1,366.86	1,359.10	7.77	15,810	1,359.18	1,359.18			
MH-70	1,366.00	1,358.07	7.93	15,810	1,358.15	1,358,15			
MH-71	1,372.00	1,364.33	7.67	15,810	1,364.41	1,364.41			
MH-72	1,370.00	1,362.23	7.77	15,810	1,362.32	1,362,32			
MH-73	1,369.00	1,361.23	7.77	15,810	1,361.31	1,361.31			
MH-74	1,374.00	1,366.33	7.67	11,270	1,366.40	1,366,40			
MH-75	1,372.00	1,364.23	7.77	11,270	1,364.31	1,364.31			
MH-76	1,371.13	1,363.37	7.77	11,270	1,363.44	1,363.44			
MH-77	1,360.15	1,352.48	7.67	9,720	1,352.55	1,352.55			
MH-78	1,359.50	1,351.82	7.68	9,720	1,351.89	1,351.89			
MH-79	1,357.75	1,349.98	7.77	9,720	1,350.04	1,350.04			
MH-80	1,356.16	1,348.23	7.94	9,720	1,348.29	1,348.29			
MH-81	1,359.81	1,352.14	7.67	9,720	1,352.20	1,352.20			
MH-82	1,358.00	1,350.23	7.77	9,720	1,350.30	1,350.30			
MH-83	1,365.60	1,357.93	7.67	14,472	1,358.01	1,358.01			
MH-84	1,365.00	1,356.33	8.67	14,472	1,356.41	1,356.41			
MH-85	1,364.05	1,355.31	8.75	14,472	1,355.39	1,355.39			
MH-86	1,363.65	1,354.15	9.51	25,920	1,354.26	1,354.26			
MH-87	1,360.89	1,352.71	8.18	25,920	1,352.82	1,352.82			
MH-88	1,361.00	1,351.53	9.47	25,920	1,351.64	1,351.64			
MH-89	1,363.97	1,356.30	7.67	11,448	1,356.37	1,356.37			
MH-90	1,363.00	1,355.23	7.77	11,448	1,355.31	1,355.31			
MH-91	1,363.63	1,355.96	7.67	14,472	1,356.04	1,356.04			
MH-92	1,364.73	1,354.45	10.28	14,472	1,354.53	1,354.53			
MH-93	1,372.19	1,364.53	7.67	14,472	1,364.61	1,364.61			
MH-94	1,371.07	1,360.62	10.45	28,944	1,360.73	1,360.73			
MH-95	1,374.00	1,366.33	7.67	16,728	1,366.41	1,366.41			
MH-96	1,372.02	1,364.26	7.77	33,456	1,364.37	1,364.37			
MH-97	1,373.00	1,365.33	7.67	14,472	1,365.40	1,365.40			
MH-98	1,370.00	1,362.23	7.77	14,472	1,362.32	1,362.32			
19-1003_1833 SewerCAD (SUB 06).stsw Hawes Crossing (Mesa, AZ) M. J 10/8/2019 HILGARTWILSON, LLC. Page									

M. Jessop Page 2 of 7

19-1003_	1833 SewerCAD (SUB	06).stsw
FlexTable	: Manhole Table	

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)				
	(ft)	(ft)	(ft)	(9-4,,)	(ft)	(ft)				
MH-99	1,376.18	1,368.52	7.67	16,728	1,368.59	1,368.59				
MH-100	1,374.16	1,366.40	7.77	16,728	1,366.48	1,366.48				
MH-101	1,333.76	1,323.89	9.86	825,678	1,324.34	1,324.34				
MH-102	1,334.48	1,325.73	8.74	825,678	1,326.19	1,326.19				
MH-103	1,338.87	1,327.57	11.30	825,678	1,328.03	1,328.03				
MH-104	1,342.47	1,329.41	13.06	825,678	1,329.87	1,329.87				
MH-105	1,342.70	1,331.25	11.44	825,678	1,331.71	1,331.71				
MH-106	1,342.47	1,332.05	10.42	825,678	1,332.50	1,332.50				
MH-107	1,345.14	1,333.89	11.26	825,678	1,334.34	1,334.34				
MH-108	1,349.32	1,335.73	13.59	825,678	1,336.18	1,336.18				
MH-109	1,350.01	1,337.57	12.44	825,678	1,338.02	1,338.02				
MH-110	1,355.10	1,339.41	15.69	825,678	1,339.86	1,339.86				
MH-111	1,356.14	1,339.84	16.31	825,678	1,340.29	1,340.29				
MH-112	1,359.04	1,346.43	12.61	715,202	1,346.82	1,346.82				
MH-113	1,359.48	1,347.11	12.38	609,306	1,347.51	1,347.51				
MH-114	1,362.61	1,349.77	12.84	552,694	1,350.16	1,350.16				
MH-115	1,364.08	1,350.72	13.37	523,750	1,351.10	1,351.10				
MH-116	1,366.12	1,352.30	13.82	514,780	1,352.68	1,352.68				
MH-117	1,368.33	1,353.85	14.47	469,574	1,354.22	1,354.22				
MH-118	1,369.75	1,355.16	14.58	312,674	1,355.43	1,355.43				
MH-119	1,372.00	1,356.98	15.02	282,738	1,357.26	1,357.26				
MH-120	1,369.17	1,361.41	7.77	15,660	1,361.49	1,361.49				
MH-121	1,370.35	1,360.45	9.90	26,244	1,360.55	1,360.55				
MH-122	1,366.78	1,358.16	8.61	37,908	1,358.29	1,358.29				
MH-123	1,364.00	1,356.23	7.77	37,908	1,356.36	1,356.36				
MH-124	1,362.66	1,352.85	9.82	65,956	1,353.02	1,353.02				
MH-125	1,364.02	1,351.26	12.76	79,996	1,351.45	1,351.45				
MH-126	1,361.92	1,349.51	12.41	98,356	1,349.72	1,349.72				
MH-127	1,360.00	1,347.60	12.40	105,896	1,347.82	1,347.82				
MH-128	1,361.60	1,353.94	7.67	14,256	1,354.00	1,354.00				
MH-129	1,358.44	1,344.25	14.19	96,220	1,344.46	1,344.46				
MH-130	1,357.00	1,342.50	14.50	110,476	1,342.73	1,342.73				
MH-131	1,362.00	1,354.33	7.67	7,540	1,354.39	1,354.39				
MH-132	1,362.98	1,353.51	9.48	7,540	1,353.57	1,353.57				
MH-133	1,366.72	1,359.06	7.67	18,360	1,359.13	1,359.13				
MH-134	1,363.24	1,355.47	7.77	18,360	1,355.56	1,355.56				
MH-135	1,365.00	1,357.33	7.67	14,040	1,357.41	1,357.41				
MH-136	1,366.00	1,356.14	9.86	14,040	1,356.23	1,356.23				
MH-137	1,365.30	1,357.63	7.67	11,664	1,357.70	1,357.70				
MH-138	1,363.00	1,355.23	7.77	11,664	1,355.31	1,355.31				
MH-139	1,363.00	1,354.12	8.88	11,664	1,354.18	1,354.18				
MH-140	1,368.57	1,360.91	7.67	11,664	1,360.98	1,360.98				
MH-141	1,367.37	1,359.60	7.77	11,664	1,359.68	1,359.68				
MH-142	1,360.78	1,353.11	/.67	13,909	1,353.19	1,353.19				
MH-143	1,362.99	1,351.65	11.34	54,145	1,351.80	1,351.80				
MIL 145	1,360.00	1,350.06	9.94	68,055	1,350.24	1,350.24				
MIL 140	1,361.66	1,348.04	13.63	68,055	1,348.21	1,348.21				
MIL 147	1,359.60	1,346.29	13.32	81,964	1,346.48	1,346.48				
1910-147	1,358.00	1,344.93	13.07	81,964	1,345.12	1,345.12				
19-1003_1833 S 10/8/2019	19-1003_1833 SewerCAD (SUB 06).stsw Hawes Crossing (Mesa, AZ) M. Jess 10/8/2019 HILGARTWILSON, LLC. Page 3 o									

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Manhole Table

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
	(ft)	(ft)	(ft)		(ft)	(ft)
MH-148	1,368.00	1,360.33	7.67	12,288	1,360.40	1,360.40
MH-149	1,364.97	1,357.21	7.77	12,288	1,357.28	1,357.28
MH-150	1,365.86	1,355.54	10.32	40,236	1,355.67	1,355.67
MH-151	1,364.17	1,354.82	9.34	16,384	1,354.91	1,354.91
MH-152	1,371.53	1,363.87	7.67	12,288	1,363.93	1,363.93
MH-153	1,369.34	1,361.57	7.77	12,288	1,361.65	1,361.65
MH-154	1,368.02	1,359.82	8.20	27,948	1,359.93	1,359.93
MH-155	1,362.00	1,353.29	8.71	28,048	1,353.41	1,353.41
MH-156	1,370.00	1,362.23	7.77	15,660	1,362.30	1,362.30
MH-157	1,365.93	1,358.16	7.77	27,948	1,358.27	1,358.27
MH-158	1,371.00	1,363.33	7.67	10,584	1,363.40	1,363.40
MH-159	1,371.17	1,362.56	8.61	10,584	1,362.63	1,362.63
MH-160	1,372.28	1,364.51	7.77	15,660	1,364.59	1,364.59
MH-161	1,372.19	1,363.52	8.67	15,660	1,363.60	1,363.60
MH-162	1,372.96	1,365.20	7.77	15,660	1,365.28	1,365.28
MH-163	1,377.25	1,369.58	7.67	15,660	1,369.65	1,369.65
MH-164	1,370.00	1,355.34	14.66	156,900	1,355.61	1,355.61
MH-165	1,371.00	1,356.62	14.38	156,900	1,356.89	1,356.89
MH-166	1,371.74	1,358.54	13.20	89,570	1,358.74	1,358.74
MH-167	1,372.00	1,360.29	11.71	89,570	1,360.49	1,360.49
MH-168	1,373.35	1,362.04	11.32	89,570	1,362.24	1,362.24
MH-169	1,368.51	1,360.10	8.41	10,584	1,360.17	1,360.17
MH-170	1,368.09	1,359.43	8.66	10,584	1,359.50	1,359.50
MH-171	1,368.00	1,358.47	9.53	10,584	1,358.54	1,358.54
MH-172	1,367.07	1,354.84	12.22	28,944	1,354.96	1,354.96
MH-173	1,363.26	1,354.12	9.14	28,944	1,354.24	1,354.24
MH-174	1,364.00	1,352.98	11.02	28,944	1,353.09	1,353.09
MH-175	1,367.43	1,359.76	7.67	18,360	1,359.84	1,359.84
MH-176	1,364.00	1,356.23	7.77	18,360	1,356.33	1,356.33
MH-177	1,371.08	1,363.41	7.67	10,584	1,363.48	1,363.48
MH-178	1,369.37	1,361.60	7.77	10,584	1,361.67	1,361.67
MH-179	1,369.26	1,361.59	7.67	8,970	1,361.65	1,361.65
MH-180	1,368.00	1,360.23	/.//	8,970	1,360.30	1,360.30
MH-181	1,367.00	1,359.33	7.67	8,970	1,359.39	1,359.39
MH-182	1,365.18	1,357.41	/.//	8,970	1,357.47	1,357.47
MH-183	1,3/1.31	1,363.64	/.6/	16,416	1,363./3	1,363./3
MU 105	1,3/0./1	1,362.85	/.8/	16,416	1,362.93	1,362.93
MH 190	1,3/5.00	1,361.69	13.31	67,330	1,301.86	1,301.86
MH-180	1,3/4.5/	1,303.04	10.93	89,570	1,303.84	1,303.84
MIL 100	1,370.53	1,303.32	13.22	44,050	1,303.40	1,303.40
	1,3/8.00	1,304.//	13.23	44,050	1,304.91	1,304.91
ил 100 МП 100	1,3/9.82	1,307.39	12.23	21,970	1,307.09	1,307.09
МП-190 МП-101	1,3/5.09	1,308.02	/.0/	22,080	1,308.12	1,308.12
ип-191 МЦ 100	1,3/3.00	1,300.91	8.09 77	22,080	1,30/.01	1,30/.01
мц 102	1,3/4.00	1,300.23	/.//	22,080	1,300.34	1,300.34
MH 104	1,380.01	1,3/2.34	/.0/	22,080	1,3/2.42	1,3/2.42
MH_10E	1,300.00	1,2/2.33	/.0/	20,905	1,3/2.41	1,3/2.41
MH 106	1,300.00	1,200.00	11.12 7.57	21,970	1,300.98	1,300.90
190 ספר-חויי	1,3/8.11	1,370.44	/.6/	10,985	1,3/0.51	1,3/0.51

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019 Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC. M. Jessop Page 4 of 7

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Manhole Table

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)		
	(ft)	(ft)	(ft)		(ft)	(ft)		
MH-197	1,380.00	1,369.62	10.38	10,985	1,369.69	1,369.69		
MH-198	1,370.00	1,362.23	7.77	15,660	1,362.31	1,362.31		
MH-199	1,375.31	1,367.64	7.67	10,368	1,367.70	1,367.70		
MH-200	1,372.96	1,365.20	7.77	10,368	1,365.27	1,365.27		
MH-201	1,377.55	1,363.96	13.59	10,368	1,364.03	1,364.03		
MH-202	1,360.63	1,349.69	10.95	56,612	1,349.85	1,349.85		
MH-203	1,359.80	1,351.44	8.36	36,236	1,351.57	1,351.57		
MH-204	1,361.78	1,352.76	9.01	36,236	1,352.89	1,352.89		
MH-205	1,364.00	1,354.05	9.95	15,860	1,354.13	1,354.13		
MH-206	1,363.00	1,355.33	7.67	15,860	1,355.42	1,355.42		
MH-207	1,364.86	1,356.59	8.27	36,236	1,356.72	1,356.72		
MH-208	1,365.98	1,358.21	7.77	15,860	1,358.30	1,358.30		
MH-209	1,368.00	1,360.33	7.67	15,860	1,360.41	1,360.41		
MH-210	1,370.82	1,360.49	10.33	13,520	1,360.57	1,360.57		
MH-211	1,371.00	1,362.21	8.79	13,520	1,362.29	1,362.29		
MH-212	1,371.00	1,363.33	7.67	13,520	1,363.41	1,363.41		
MH-213	1,372.00	1,364.33	7.67	13,520	1,364.41	1,364.41		
MH-214	1,374.00	1,363.08	10.93	71,130	1,363.25	1,363.25		
MH-215	1,373.78	1,364.30	9.48	42,150	1,364.44	1,364.44		
MH-216	1,376.07	1,365.90	10.17	42,150	1,366.03	1,366.03		
MH-217	1,378.92	1,371.25	7.67	14,490	1,371.33	1,371.33		
MH-218	1,376.90	1,369.13	7.77	14,490	1,369.20	1,369.20		
MH-219	1,374.60	1,366.83	7.77	28,980	1,366.95	1,366.95		
MH-220	1,375.00	1,365.60	9.40	28,980	1,365.71	1,365.71		
MH-221	1,379.69	1,372.02	7.67	21,075	1,372.12	1,372.12		
MH-222	1,378.50	1,370.73	7.77	21,075	1,370.82	1,370.82		
MH-223	1,377.19	1,369.42	7.77	42,150	1,369.56	1,369.56		
MH-224	1,376.07	1,368.30	7.77	42,150	1,368.43	1,368.43		
MH-225	1,3/5.03	1,367.26	/.//	42,150	1,367.40	1,367.40		
MH-226	1,386.00	1,3/8.33	/.6/	11,700	1,3/8.39	1,378.39		
MH-227	1,383.00	1,3/5.23	/.//	11,/00	1,3/5.31	1,3/5.31		
MH-228	1,381.68	1,3/3.91	/.//	23,400	1,3/3.99	1,3/3.99		
MH-229	1,376.13	1,365.39	10.74	89,570	1,365.59	1,365.59		
MH-230	1,379.00	1,367.14	11.86	89,570	1,367.34	1,367.34		
I°IП-231 МЦ 222	1,301.09	1,308.89	12.20	0/,1//	1,369.07	1,369.07		
ML 222	1,382.72	1,3/0.64	12.08		1,3/0.82	1,3/0.82		
ML 224	1,385.00	1,372.39	12.01	44,785	1,3/2.53	1,3/2.53		
ML 225	1,384.20	1,3/4.14	10.06	44,/85	1,3/4.28	1,3/4.28		
мц 222	1,383.00	1,3/5.89	/.// רא ר	22,392	1,3/5.99	1,3/3.99		
111-230 MU 227	1,300.45	1,3/8./8	/.0/	22,392	1,3/8.8/	1,3/0.0/		
IMI 220	1,3/5.00	1,358.82	16.18	258,850	1,359.09	1,359.09		
ML 220	1,3/5.00	1,359.34	16.26	258,850	1,359.61	1,359.01		
мц 240	1,3/8.00	1,301.02	10.98	258,850	1,301.08	1,301.08		
MU 241	1,393.24	1,301.03	13.41	17,010	1,301.90 1 202 1	1,301.90 דד בסכ 1		
MU 242	1,393.01	1,302.0/	13.14	17,010	1,302.//	1,302.//		
№П-242 МЦ 242	1,398.16	1,300.01	9.36 7.7	8,905 8 005	1,300.8/	1,300.01		
мц 243	1,397.41	1,207.14	/.0/ 7.7	0,905 0 005	1,303.61	1,207.01		
ML 245	1,072.40	1,004.01	/.0/ 0.0F	0,905 0 005	1,004.00	1,304.00		
1111-245	1,392.71	1,383.86	8.85	8,905	1,383.93	1,383.93		

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019 Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC. M. Jessop Page 5 of 7

19-1003_	1833 SewerCAD (SUB	06).stsw
FlexTable	Manhole Table	

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
	(ft)	`(ft) ´	(ft)		(ft)	(ft)
MH-247	1,380.78	1,362.38	18.40	258,850	1,362.72	1,362.72
MH-248	1,383.69	1,363.14	20.55	241,083	1,363.47	1,363.47
MH-249	1,386.68	1,363.81	22.87	241,083	1,364.14	1,364.14
MH-250	1,388.41	1,364.57	23.84	0	1,364.57	1,364.57
MH-251	1,390.74	1,365.33	25.41	0	1,365.33	1,365.33
MH-252	1,387.28	1,365.76	21.52	241,083	1,366.04	1,366.04
MH-253	1,386.06	1,366.81	19.25	217,163	1,367.12	1,367.12
MH-254	1,389.87	1,370.54	19.33	114,940	1,370.77	1,370.77
MH-255	1,390.58	1,372.29	18.29	114,940	1,372.52	1,372.52
MH-256	1,393,49	1,374.04	19.45	87,900	1.374.24	1,374.24
MH-257	1.393.87	1.375.79	18.08	60,860	1.375.96	1.375.96
MH-258	1.394.90	1.377.54	17.35	60,860	1.377.71	1.377.71
MH-259	1.396.06	1.379.29	16.77	31,105	1.379.41	1.379.41
MH-260	1,398,65	1.381.04	17.61	31,105	1.381.16	1.381.16
MH-261	1,400.60	1.382.79	17.81	22,540	1.382.89	1.382.89
MH-262	1.391.81	1.384.14	7.67	22,540	1.384.24	1,384,24
MH-263	1 396 95	1 389 18	7 77	16 380	1 389 27	1 389 27
MH-264	1 399 34	1 391 67	7.67	16 380	1 391 75	1 391 75
MH-265	1 394 75	1 386 98	7.07	17 290	1 387 07	1 387 07
MH-266	1 397 07	1 389 40	7.67	17,250	1 389 48	1 389 48
MH-267	1,357.07	1 385 36	7.07	17,250	1,305.40	1 385 44
MH-268	1 388 00	1 380 23	7.07	23 920	1,303.44	1 380 33
MH-260	1,300.00	1 384 37	8.00	11 960	1,300.33	1 384 43
MH-270	1,392.30	1 385 45	7.67	11,900	1,305.53	1,305,52
ML 271	1,393.11	1,303.43	7.07	0.750	1,000.02	1,003.32
MH-272	1,391.14	1,302.01	0.55	9,730	1,302.00	1,302.00
MH_272	1,392.02	1 381 42	7.07	9,750	1,304.42	1 381 48
MI 274	1,309.00	1,301.72	10.22	3,730 12 275	1,301.70	1,301.40
MH-275	1,393.10	1,302.00	10.55	13,373	1,302.94	1,302.94
MH-276	1,392.29	1 385 47	0.34	8,505	1,307.09	1 385 53
MI 277	1,394.01	1,303.47	5.54 7.67	0,000	1,303.33	1,303.33
ML 270	1,394.19	1,300.32	16 56	102,202	1,300.39	1,360.39
МП-270	1,305.45	1,300.09	16.50	102,223	1,309.11	1,309.11
MI 200	1,200.//	1,370.04	10.12	04,437 74 707	1,370.04	1,370.04
ML 201	1,300.32	1,372.39	15.95	/4,/0/	1,3/2.3/	1,372.37
	1,309.31	1,374.14	13.37	47,190	1,374.29	1,374.29
	1,390.44	1,373.09	14.55	47,190	1,370.04	1,370.04
MI 204	1,392.54	1,377.04	14.90	22,015	1,377.74	1,377.74
MU 205	1,388.02	1,379.39	9.23	22,815	1,3/9.49	1,379.49
MU 200	1,388.11	1,380.44	7.07	9,750	1,380.51	1,380.51
MU 207	1,390.23	1,381.20	8.97	9,750	1,381.33	1,381.33
MU 200	1,390.08	1,383.01	/.0/	9,750	1,383.08	1,383.08
	1,390.00	1,382.24	1.//	10,595	1,382.31	1,382.31
MH-289	1,391.8/	1,384.20	/.6/	9,035	1,384.26	1,384.26
MIH-290	1,392.20	1,384.44	/.//	9,035	1,384.49	1,384.49
MH-291	1,394.03	1,386.36	/.6/	9,035	1,386.42	1,386.42
MH-292	1,383.24	1,3/5.09	8.16	1/,/67	1,3/5.18	1,3/5.18
MH-293	1,384.50	1,3/6.84	/.67	1/,/67	1,3/6.93	1,3/6.93
MH-294	1,386.89	1,3/8./6	8.13	1/,/67	1,3/8.85	1,3/8.85
MH-295	1,388.17	1,380.51	7.67	17,767	1,380.60	1,380.60
19-1003_1833 S 10/8/2019	SewerCAD (SUB 0	6).stsw	Hawes Cr HILGAR	ossing (Mesa, AZ) TWILSON, LLC.		M. Jes Page 6

M. Jessop Page 6 of 7

Active Scenario: Avg Flow (Conservative Densities)

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Depth (Structure) (ft)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)		
MH-296	1,391.82	1,381.66	10.17	13,780	1,381.74	1,381.74		
MH-297	1,391.07	1,383.41	7.67	13,780	1,383.49	1,383.49		
MH-298	1,389.15	1,380.32	8.82	13,780	1,380.40	1,380.40		
MH-299	1,389.74	1,382.07	7.67	13,780	1,382.15	1,382.15		
MH-300	1,381.47	1,373.70	7.77	17,767	1,373.79	1,373.79		
MH-301	1,383.19	1,375.53	7.67	17,767	1,375.61	1,375.61		
MH-302	1,370.79	1,363.12	7.67	8,192	1,363.19	1,363.19		
MH-303	1,373.90	1,361.70	12.19	8,192	1,361.76	1,361.76		
MH-304	1,367.23	1,359.46	7.77	8,192	1,359.52	1,359.52		
MH-305	1,364.62	1,356.85	7.77	8,192	1,356.91	1,356.91		
MH-306	1,364.00	1,355.91	8.09	8,192	1,355.98	1,355.98		
MH-307	1,365.00	1,357.33	7.67	8,192	1,357.40	1,357.40		
MH-308	1,373.82	1,366.15	7.67	15,660	1,366.23	1,366.23		
MH-309	1,399.68	1,391.91	7.77	17,420	1,391.98	1,391.98		
MH-310	1,402.57	1,394.90	7.67	17,420	1,394.97	1,394.97		
MH-311	1,376.00	1,364.19	11.81	0	1,364.19	1,364.19		

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(11)	(11)		(11)	(11)			(Design)	(gai/uay)	(%)	(gai/uay)
CO-1	8.0	295.4	0.013	0.0033	MH-1	1.372.33	7.00	MH-2	1.371.36	7.97	15.336	0.93	4.4	351,922	12.6	448.636
CO-2	8.0	372.1	0.013	0.0033	MH-2	1.371.26	8.07	MH-35	1,370.03	7.37	15,336	0.93	4.4	351,922	12.6	448,636
CO-3	8.0	203.5	0.013	0.0081	MH-3	1,367.30	7.10	MH-4	1,365.66	7.00	15,336	1.27	2.8	551,079	10.2	702,525
CO-4	8.0	267.9	0.013	0.0033	MH-4	1,365.56	7.10	MH-5	1,364.67	11.27	15,336	0.93	4.4	351,922	12.6	448,636
CO-5	8.0	453.3	0.013	0.0047	MH-5	1,364.57	11.37	MH-6	1,362.46	11.32	32,832	1.31	7.9	418,101	16.8	533,002
CO-6	8.0	310.3	0.013	0.0033	MH-6	1,362.36	11.42	MH-36	1,361.34	11.00	59,832	1.38	17.0	351,922	24.7	448,636
CO-7	8.0	194.0	0.013	0.0033	MH-7	1,360.01	8.33	MH-8	1,359.37	7.97	71,496	1.45	20.3	351,922	27.0	448,636
CO-8	8.0	127.9	0.013	0.0033	MH-8	1,359.27	8.07	MH-9	1,358.85	7.50	88,392	1.55	25.1	351,922	30.1	448,636
CO-9	8.0	311.7	0.013	0.0057	MH-9	1,358.75	7.60	MH-10	1,356.97	8.64	88,392	1.88	19.1	462,104	26.2	589,098
CO-10	10.0	246.2	0.013	0.0024	MH-10	1,356.71	8.74	MH-37	1,356.11	9.97	128,888	1.50	23.7	544,154	29.2	693,696
CO-11	10.0	442.6	0.013	0.0024	MH-11	1,355.07	7.10	MH-12	1,354.00	7.30	151,928	1.58	27.9	544,154	31.8	693,696
CO-12	10.0	449.9	0.013	0.0024	MH-12	1,353.90	7.40	MH-13	1,352.82	8.48	151,928	1.58	27.9	544,154	31.8	693,696
CO-13	10.0	346.0	0.013	0.0106	MH-13	1,352.72	8.58	OF-3 (EX MH-28280)	1,349.04	12.58	151,928	2.68	13.3	1,146,179	21.8	1,461,169
CO-14	8.0	453.3	0.013	0.0033	MH-14	1,370.33	7.00	MH-15	1,368.84	10.50	17,496	0.96	5.0	351,922	13.5	448,636
CO-15	8.0	496.8	0.013	0.0033	MH-15	1,368.74	10.60	MH-5	1,367.10	8.84	17,496	0.96	5.0	351,922	13.5	448,636
CO-16	8.0	491.5	0.013	0.0033	MH-16	1,361.46	7.00	MH-17	1,359.84	5.68	11,520	0.85	3.3	351,697	11.0	448,349
CO-17	8.0	401.5	0.013	0.0033	MH-17	1,359.74	5.78	MH-18	1,358.41	5.62	11,520	0.85	3.3	352,596	11.0	449,495
CO-18	8.0	500.0	0.013	0.0033	MH-18	1,358.31	5.72	MH-19	1,356.66	5.96	23,040	1.04	6.5	351,936	15.4	448,654
CO-19	8.0	301.7	0.013	0.0044	MH-19	1,356.56	6.06	MH-11	1,355.24	7.09	23,040	1.15	5.7	405,215	14.4	516,576
CO-20	8.0	419.5	0.013	0.0267	MH-20	1,378.55	7.00	MH-21	1,367.33	7.00	8,448	1.60	0.8	1,001,627	5.8	1,276,891
CO-21	8.0	374.8	0.013	0.0055	MH-21	1,367.23	7.10	MH-34	1,365.16	7.00	8,448	0.93	1.9	455,133	8.4	580,211
CO-22	8.0	383.4	0.013	0.0040	MH-22	1,363.23	7.10	MH-23	1,361.68	7.00	16,896	1.02	4.3	389,866	12.6	497,008
CO-23	8.0	526.6	0.013	0.0042	MH-23	1,361.58	7.10	MH-8	1,359.37	7.97	16,896	1.04	4.3	397,150	12.5	506,294
CO-24	8.0	281.6	0.013	0.0112	MH-24	1,365.33	7.00	MH-25	1,362.19	7.00	11,664	1.31	1.8	647,209	8.3	825,073
CO-25	8.0	400.1	0.013	0.0050	MH-25	1,362.09	7.10	MH-7	1,360.11	8.23	11,664	0.98	2.7	431,331	10.1	549,868
CO-26	8.0	317.7	0.013	0.0046	MH-26	1,369.18	7.00	MH-27	1,367.71	7.00	11,664	0.96	2.8	417,573	10.2	532,329
CO-27	8.0	398.9	0.013	0.0033	MH-27	1,367.61	7.10	MH-6	1,366.29	7.49	11,664	0.85	3.3	351,922	11.1	448,636
CO-28	8.0	268.5	0.013	0.0033	MH-28	1,365.33	7.00	MH-29	1,364.45	7.89	15,336	0.93	4.4	351,922	12.6	448,636
CO-29	8.0	498.0	0.013	0.0115	MH-29	1,364.35	7.99	MH-10	1,358.61	7.00	15,336	1.43	2.3	657,445	9.4	838,122
CO-30	8.0	413.9	0.013	0.0058	MH-30	1,366.36	7.00	MH-31	1,363.95	/.00	15,336	1.13	3.3	467,692	11.1	596,221
CO-31	8.0	419.8	0.013	0.0033	MH-31	1,363.85	/.10	MH-6	1,362.46	11.32	15,336	0.93	4.4	351,922	12.6	448,636
CO-32	8.0	493.3	0.013	0.0142	MH-32	1,365.33	7.00	MH-33	1,358.33	7.00	25,160	1.79	3.4	/29,/39	11.3	930,284
CO-33	8.0	382.2	0.013	0.0033	MH-33	1,358.23	7.10	MH-10	1,356.97	8.64	25,160	1.07	/.1	351,922	16.1	448,636
CO-34	8.0	415.4	0.013	0.0042	MH-34	1,365.06	7.10	MH-22	1,363.33	7.00	16,896	1.04	4.3	395,480	12.5	504,164
CO-35	8.0	262.9	0.013	0.0096	MIH-35	1,369.93	/.4/	MH-3	1,367.40	/.00	15,336	1.34	2.6	600,743	9.8	/65,838
CO 27	δ.U	342.0	0.013	0.0033	мц эт	1,301.24	10.07	ML 11	1,300.11	0.23 7.00	59,832	1.38	17.0	351,922	24./	448,636
CO-37	10.0	350.3	0.013	0.0024	MU 20	1,356.01	10.07	MIL 20	1,355.1/	7.00	120,000	1.51	23.0	540,505	29.1	696,694
0-38	Ø.U	303.4	0.013	0.0033	אַכ-חוייו	1,300.83	/.00	IM-39	1,359.63	7.00	12,880	0.88	/.د	321,922	11.6	448,636

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(π)	g's n	(π/π)	Node	(Start)	(Start)		(Stop)	(Stop)	(gai/day)	(ft/s)	(Design)	(Design) (gal/day)	(Normal) / Diam	(FUIL FIOW) (gal/day)
						(10)	(10)		(11)	(10)			(%)	(gai/uay)	(%)	(gal/day)
CO-39	8.0	369.4	0.013	0.0033	MH-39	1,359.53	7.10	MH-40	1,358.32	9.14	12,880	0.88	3.7	351,922	11.6	448,636
CO-40	8.0	225.3	0.013	0.0033	MH-40	1,358.22	9.24	MH-41	1,357.47	11.56	12,880	0.88	3.7	351,922	11.6	448,636
CO-41	8.0	261.2	0.013	0.0045	MH-41	1,357.37	11.66	OF-4 (EX- MH-28282)	1,356.19	12.79	39,670	1.37	9.6	412,038	18.6	525,273
CO-42	8.0	378.4	0.013	0.0033	MH-42	1,367.33	7.00	MH-43	1,366.08	7.28	26,790	1.09	7.6	351,922	16.6	448,636
CO-43	8.0	498.7	0.013	0.0039	MH-43	1,365.98	7.38	MH-44	1,364.03	7.00	26,790	1.16	7.0	383,307	15.9	488,646
CO-44	8.0	498.3	0.013	0.0038	MH-44	1,363.93	7.10	MH-41	1,362.03	7.00	26,790	1.15	7.1	378,005	16.0	481,887
CO-45	8.0	500.0	0.013	0.0033	MH-45	1,343.99	8.62	OF-1 (EX- MH-28278)	1,342.34	10.10	88,376	1.55	25.1	351,922	30.1	448,636
CO-46	8.0	500.0	0.013	0.0033	MH-46	1,345.74	8.73	MH-45	1,344.09	8.52	41,728	1.24	11.9	351,922	20.6	448,636
CO-47	8.0	500.0	0.013	0.0033	MH-47	1,347.49	7.10	MH-46	1,345.84	8.63	41,728	1.24	9.3	448,636	20.6	448,636
CO-48	8.0	364.8	0.013	0.0033	MH-48	1,348.79	7.10	MH-47	1,347.59	7.00	31,296	1.14	7.0	448,671	17.9	448,671
CO-49	8.0	282.5	0.013	0.0037	MH-49	1,349.93	7.10	MH-48	1,348.89	7.00	31,296	1.19	6.6	472,923	17.4	472,923
CO-50	8.0	277.1	0.013	0.0037	MH-50	1,351.04	7.10	MH-49	1,350.03	7.00	20,864	1.06	4.4	472,419	14.3	472,419
CO-51	8.0	355.2	0.013	0.0033	MH-51	1,352.32	7.10	MH-50	1,351.14	7.00	20,864	1.02	4.6	449,342	14.7	449,342
CO-52	8.0	500.0	0.013	0.0035	MH-52	1,354.17	7.10	MH-51	1,352.42	7.00	10,432	0.84	2.3	462,031	10.4	462,031
CO-53	8.0	500.0	0.013	0.0033	MH-53	1,355.92	7.10	MH-52	1,354.27	7.00	10,432	0.82	2.3	448,636	10.5	448,636
CO-54	8.0	320.6	0.013	0.0033	MH-54	1,362.24	9.09	MH-55	1,361.18	7.26	44,726	1.27	12.7	351,922	21.3	448,636
CO-55	8.0	334.2	0.013	0.0056	MH-55	1,361.08	7.36	MH-56	1,359.21	8.16	44,726	1.53	9.8	458,118	18.7	584,017
CO-56	8.0	384.5	0.013	0.0033	MH-56	1,359.11	8.26	MH-57	1,357.84	10.20	89,480	1.55	25.4	351,922	30.3	448,636
CO-57	8.0	412.3	0.013	0.0033	MH-57	1,357.74	10.30	MH-58	1,356.38	8.95	89,480	1.55	25.4	351,922	30.3	448,636
CO-58	10.0	500.0	0.013	0.0024	MH-58	1,352.80	12.37	MH-59	1,351.60	12.09	119,762	1.47	22.0	544,154	28.1	693,696
CO-59	10.0	225.4	0.013	0.0055	MH-59	1,351.50	12.19	MH-60	1,350.25	10.31	131,210	2.04	15.9	826,781	23.8	1,053,994
CO-60	10.0	490.5	0.013	0.0024	MH-60	1,350.15	10.41	MH-61	1,348.97	8.20	157,130	1.59	28.9	544,154	32.3	693,696
CO-61	10.0	217.6	0.013	0.0073	MH-61	1,348.87	8.30	MH-62	1,347.28	7.00	166,850	2.41	17.6	950,665	25.1	1,211,924
CO-62	10.0	298.8	0.013	0.0024	MH-62	1,347.18	7.10	MH-63	1,346.46	9.71	176,570	1.64	32.4	544,132	34.4	693,669
CO-63	12.0	498.4	0.013	0.0019	MH-63	1,346.29	9.71	OF-2 (EX- MH-28279)	1,345.34	12.05	206,580	1.56	26.2	788,568	30.8	1,005,280
CO-64	8.0	364.2	0.013	0.0033	MH-64	1,358.33	7.00	MH-65	1,357.13	9.52	15,005	0.92	4.3	351,922	12.5	448,636
CO-65	8.0	451.0	0.013	0.0057	MH-65	1,357.03	9.62	MH-66	1,354.48	7.00	15,005	1.11	3.3	460,628	11.0	587,217
CO-66	8.0	404.0	0.013	0.0082	MH-66	1,354.38	7.10	MH-67	1,351.08	7.00	30,010	1.55	5.4	553,772	14.1	705,958
CO-67	8.0	303.9	0.013	0.0054	MH-67	1,350.98	7.10	MH-63	1,349.33	7.00	30,010	1.35	6.7	451,024	15.5	574,973
CO-68	8.0	347.7	0.013	0.0081	MH-68	1,362.00	7.00	MH-69	1,359.20	7.00	15,810	1.28	2.9	550,429	10.4	701,696
CO-69	8.0	282.2	0.013	0.0033	MH-69	1,359.10	7.10	MH-70	1,358.17	7.17	15,810	0.93	4.5	351,922	12.8	448,636
CO-70	8.0	354.4	0.013	0.0033	MH-70	1,358.07	7.27	MH-58	1,356.90	8.44	15,810	0.93	4.5	351,922	12.8	448,636
CO-71	8.0	401.5	0.013	0.0050	MH-71	1,364.33	7.00	MH-72	1,362.33	7.00	15,810	1.08	3.7	432,351	11.6	551,169
CO-72	8.0	247.2	0.013	0.0036	MH-72	1,362.23	7.10	MH-73	1,361.33	7.00	15,810	0.97	4.3	369,671	12.5	471,263
CO-73	8.0	315.3	0.013	0.0064	MH-73	1,361.23	7.10	MH-56	1,359.21	8.16	15,810	1.18	3.2	490,329	11.0	625,079
CO-74	8.0	318.6	0.013	0.0063	MH-74	1,366.33	7.00	MH-75	1,364.33	7.00	11,270	1.05	2.3	485,389	9.4	618,783

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Conduit Table

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
													(%)		(%)	
CO-75	8.0	220.1	0.013	0.0035	MH-75	1,364.23	7.10	MH-76	1,363.47	7.00	11,270	0.86	3.1	361,761	10.8	461,179
CO-76	8.0	310.6	0.013	0.0033	MH-76	1,363.37	7.10	MH-54	1,362.34	8.99	11,270	0.84	3.2	351,922	10.9	448,636
CO-77	8.0	198.9	0.013	0.0033	MH-77	1,352.48	7.00	MH-78	1,351.82	7.01	9,720	0.81	2.8	351,862	10.2	448,560
CO-78	8.0	499.0	0.013	0.0035	MH-78	1,351.82	7.01	MH-79	1,350.08	7.01	9,720	0.82	2.7	362,489	10.0	462,107
CO-79	8.0	500.6	0.013	0.0033	MH-79	1,349.98	7.11	MH-80	1,348.33	7.17	9,720	0.81	2.8	351,912	10.2	448,624
CO-80	8.0	267.0	0.013	0.0033	MH-80	1,348.23	7.27	MH-62	1,347.34	7.10	9,720	0.81	2.8	351,917	10.2	448,629
CO-81	8.0	381.6	0.013	0.0047	MH-81	1,352.14	7.00	MH-82	1,350.33	7.00	9,720	0.92	2.3	421,566	9.3	537,420
CO-82	8.0	279.0	0.013	0.0039	MH-82	1,350.23	7.10	MH-61	1,349.14	8.20	9,720	0.86	2.5	383,932	9.8	489,443
CO-83	8.0	456.6	0.013	0.0033	MH-83	1,357.93	7.00	MH-84	1,356.43	7.91	14,472	0.91	4.1	351,922	12.3	448,636
CO-84	8.0	279.0	0.013	0.0033	MH-84	1,356.33	8.01	MH-85	1,355.41	7.98	14,472	0.91	4.1	351,922	12.3	448,636
CO-85	8.0	320.6	0.013	0.0033	MH-85	1,355.31	8.08	MH-86	1,354.25	8.74	14,472	0.91	4.1	351,922	12.3	448,636
CO-86	8.0	405.5	0.013	0.0033	MH-86	1,354.15	8.84	MH-87	1,352.81	7.41	25,920	1.08	7.4	351,922	16.3	448,636
CO-87	8.0	325.6	0.013	0.0033	MH-87	1,352.71	7.51	MH-88	1,351.63	8.70	25,920	1.08	7.4	351,922	16.3	448,636
CO-88	8.0	339.3	0.013	0.0033	MH-88	1,351.53	8.80	MH-60	1,350.41	10.31	25,920	1.08	7.4	351,922	16.3	448,636
CO-89	8.0	262.9	0.013	0.0037	MH-89	1,356.30	7.00	MH-90	1,355.33	7.00	11,448	0.88	3.1	371,522	10.7	473,623
CO-90	8.0	405.9	0.013	0.0033	MH-90	1,355.23	7.10	MH-59	1,353.89	9.96	11,448	0.85	3.3	351,922	11.0	448,636
CO-91	8.0	428.3	0.013	0.0033	MH-91	1,355.96	7.00	MH-92	1,354.55	9.51	14,472	0.91	4.1	351,922	12.3	448,636
CO-92	8.0	419.4	0.013	0.0033	MH-92	1,354.45	9.61	MH-58	1,353.06	12.27	14,472	0.91	4.1	351,922	12.3	448,636
CO-93	8.0	411.3	0.013	0.0033	MH-93	1,364.53	7.00	MH-94	1,363.17	7.23	14,472	0.91	4.1	351,922	12.3	448,636
CO-94	8.0	425.8	0.013	0.0033	MH-94	1,360.62	9.78	MH-56	1,359.21	8.16	28,944	1.12	8.2	351,922	17.2	448,636
CO-95	8.0	331.9	0.013	0.0060	MH-95	1,366.33	7.00	MH-96	1,364.36	7.00	16,728	1.17	3.5	472,805	11.5	602,740
CO-96	8.0	437.6	0.013	0.0044	MH-96	1,364.26	7.10	MH-54	1,362.34	8.99	33,456	1.29	8.3	405,338	17.2	516,732
CO-97	8.0	424.0	0.013	0.0071	MH-97	1,365.33	7.00	MH-98	1,362.33	7.00	14,472	1.19	2.8	515,283	10.3	656,892
CO-98	8.0	459.0	0.013	0.0033	MH-98	1,362.23	7.10	MH-94	1,360.72	9.68	14,472	0.91	4.1	351,922	12.3	448,636
CO-99	8.0	326.1	0.013	0.0062	MH-99	1,368.52	7.00	MH-100	1,366.50	7.00	16,728	1.18	3.5	481,836	11.4	614,253
CO-100	8.0	432.0	0.013	0.0047	MH-100	1,366.40	7.10	MH-96	1,364.36	7.00	16,728	1.08	4.0	421,132	12.1	536,867
CO-101	21.0	600.0	0.013	0.0032	MH-101	1,323.89	8.11	OF-9 (EX- MH-25)	1,321.98	7.56	825,678	2.64	18.2	4,538,003	25.5	5,785,126
CO-102	21.0	600.0	0.013	0.0029	MH-102	1,325.73	6.99	MH-101	1,323.99	8.01	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-103	21.0	600.0	0.013	0.0029	MH-103	1,327.57	9.55	MH-102	1,325.83	6.89	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-104	21.0	600.0	0.013	0.0029	MH-104	1,329.41	11.31	MH-103	1,327.67	9.45	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-105	21.0	600.0	0.013	0.0029	MH-105	1,331.25	9.69	MH-104	1,329.51	11.21	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-106	21.0	238.6	0.013	0.0029	MH-106	1,332.05	8.67	MH-105	1,331.35	9.59	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-107	21.0	600.0	0.013	0.0029	MH-107	1,333.89	9.51	MH-106	1,332.15	8.57	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-108	21.0	600.0	0.013	0.0029	MH-108	1,335.73	11.84	MH-107	1,333.99	9.41	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-109	21.0	600.0	0.013	0.0029	MH-109	1,337.57	10.69	MH-108	1,335.83	11.74	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-110	21.0	600.0	0.013	0.0029	MH-110	1,339.41	13.94	MH-109	1,337.67	10.59	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-111	21.0	113.9	0.013	0.0029	MH-111	1,339.84	14.56	MH-110	1,339.51	13.84	825,678	2.55	19.1	4,325,799	26.1	5,514,604
CO-112	18.0	678.5	0.013	0.0096	MH-112	1,346.43	11.11	MH-111	1,339.94	14.71	715,202	3.80	13.7	5,208,462	22.2	6,639,839

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
60.112	10.0	177 1	0.012	0.0000	MU 112	1 247 11	10.00	MIL 112	1 246 52	11.01	600 206	2.47	(%)	2 0 41 5 45	(%)	2 077 414
CO-113	18.0	1//.1	0.013	0.0033	MH-113	1,347.11	10.88	MH-112	1,346.53	11.01	609,306	2.47	20.0	3,041,545	26.8	3,877,414
CO-114	10.0	491.4	0.013	0.0029		1,349.77	11.34	MIL 114	1,348.34	9.04	552,094	2.31	19.3	2,807,752	20.3	3,055,800
CO-115	18.0	293.0	0.013	0.0029	MH-115	1,350.72	11.8/	MH-114	1,349.87	11.24	523,750	2.27	18.3	2,867,752	25.0	3,655,860
CO-115	18.0	511.1	0.013	0.0029	MH-110	1,352.30	12.32	MH-115	1,350.82	11.//	514,780	2.20	18.0	2,867,752	25.4	3,655,860
CO-117	18.0	501.9	0.013	0.0029	MH-117	1,353.85	12.97	MH-116	1,352.40	12.22	469,574	2.20	16.4	2,867,752	24.2	3,655,860
0-118	18.0	292.2	0.013	0.0041	MH-118	1,355.16	13.08	MH-117	1,353.95	12.87	312,674	2.22	9.1	3,427,386	18.1	4,369,292
CO-119	18.0	591.1	0.013	0.0029	MH-119	1,356.98	13.52	MH-118	1,355.26	12.98	282,/38	1.90	9.9	2,867,752	18.8	3,655,860
CO-120	8.0	260.6	0.013	0.0033	MH-120	1,361.41	7.10	MH-121	1,360.55	9.13	15,660	0.93	4.4	351,922	12.8	448,636
CO-121	8.0	4/6.3	0.013	0.0046	MH-121	1,360.45	9.23	MH-122	1,358.26	7.85	26,244	1.22	6.3	414,778	15.2	528,767
CO-122	8.0	500.0	0.013	0.003/	MH-122	1,358.16	7.95	MH-123	1,356.33	7.00	37,908	1.25	10.2	370,628	19.2	472,483
CO-123	8.0	323.5	0.013	0.0038	MH-123	1,356.23	7.10	MH-124	1,355.00	/.00	37,908	1.28	10.0	378,680	18.9	482,747
CO-124	8.0	449.4	0.013	0.0033	MH-124	1,352.85	9.15	MH-125	1,351.36	12.00	65,956	1.42	18.7	351,922	25.9	448,636
CO-125	8.0	500.0	0.013	0.0033	MH-125	1,351.26	12.10	MH-126	1,349.61	11.64	79,996	1.50	22.7	351,922	28.6	448,636
CO-126	8.0	500.0	0.013	0.0033	MH-126	1,349.51	11.74	MH-127	1,347.86	11.47	98,356	1.59	27.9	351,922	31.8	448,636
CO-127	10.0	167.2	0.013	0.0024	MH-127	1,347.60	11.57	MH-112	1,347.19	11.01	105,896	1.42	19.5	544,154	26.4	693,696
CO-128	8.0	480.6	0.013	0.0066	MH-128	1,353.94	7.00	MH-129	1,350.77	7.00	14,256	1.15	2.9	496,992	10.4	633,574
CO-129	8.0	499.2	0.013	0.0033	MH-129	1,344.25	13.52	MH-130	1,342.60	13.73	96,220	1.58	27.3	351,922	31.5	448,636
CO-130	8.0	497.8	0.013	0.0035	MH-130	1,342.50	13.83	MH-111	1,340.77	14.71	110,476	1.68	30.6	361,485	33.3	460,828
CO-131	8.0	220.6	0.013	0.0033	MH-131	1,354.33	7.00	MH-132	1,353.61	8.71	7,540	0.75	2.1	351,922	9.0	448,636
CO-132	8.0	412.0	0.013	0.0033	MH-132	1,353.51	8.81	MH-127	1,352.15	7.19	7,540	0.75	2.1	351,922	9.0	448,636
CO-133	8.0	283.6	0.013	0.0123	MH-133	1,359.06	7.00	MH-134	1,355.57	7.00	18,360	1.55	2.7	679,027	10.1	865,635
CO-134	8.0	474.7	0.013	0.0033	MH-134	1,355.47	7.10	MH-126	1,353.91	7.35	18,360	0.97	5.2	351,922	13.8	448,636
CO-135	8.0	329.9	0.013	0.0033	MH-135	1,357.33	7.00	MH-136	1,356.24	9.09	14,040	0.90	4.0	351,922	12.1	448,636
CO-136	8.0	387.5	0.013	0.0033	MH-136	1,356.14	9.19	MH-125	1,354.87	8.49	14,040	0.90	4.0	351,922	12.1	448,636
CO-137	8.0	387.3	0.013	0.0059	MH-137	1,357.63	7.00	MH-138	1,355.33	7.00	11,664	1.04	2.5	471,832	9.7	601,499
CO-138	8.0	308.1	0.013	0.0033	MH-138	1,355.23	7.10	MH-139	1,354.22	8.12	11,664	0.85	3.3	351,922	11.1	448,636
CO-139	8.0	113.1	0.013	0.0064	MH-139	1,354.12	8.22	MH-155	1,353.39	7.94	11,664	1.08	2.4	490,065	9.5	624,744
CO-140	8.0	337.7	0.013	0.0036	MH-140	1,360.91	7.00	MH-141	1,359.70	7.00	11,664	0.87	3.2	365,687	10.9	466,184
CO-141	8.0	406.2	0.013	0.0033	MH-141	1,359.60	7.10	MH-122	1,358.26	7.85	11,664	0.85	3.3	351,922	11.1	448,636
CO-142	8.0	412.5	0.013	0.0033	MH-142	1,353.11	7.00	MH-143	1,351.75	10.57	13,909	0.90	4.0	351,922	12.1	448,636
CO-143	8.0	450.5	0.013	0.0033	MH-143	1,351.65	10.67	MH-144	1,350.16	9.17	54,145	1.34	15.4	351,922	23.4	448,636
CO-144	8.0	583.4	0.013	0.0033	MH-144	1,350.06	9.27	MH-145	1,348.14	12.86	68,055	1.44	19.3	351,922	26.3	448,636
CO-145	8.0	499.7	0.013	0.0033	MH-145	1,348.04	12.96	MH-146	1,346.39	12.55	68,055	1.44	19.3	351,922	26.3	448,636
CO-146	8.0	381.3	0.013	0.0033	MH-146	1,346.29	12.65	MH-147	1,345.03	12.30	81,964	1.51	23.3	351,922	29.0	448,636
CO-147	8.0	175.3	0.013	0.0033	MH-147	1,344.93	12.40	MH-129	1,344.35	13.42	81,964	1.51	23.3	351,922	29.0	448,636
CO-148	8.0	452.6	0.013	0.0067	MH-148	1,360.33	7.00	MH-149	1,357.31	7.00	12,288	1.10	2.5	500,929	9.6	638,593
CO-149	8.0	475.5	0.013	0.0033	MH-149	1,357.21	7.10	MH-150	1,355.64	9.56	12,288	0.87	3.5	351,922	11.4	448,636
CO-150	8.0	237.9	0.013	0.0033	MH-150	1,355.54	9.66	MH-143	1,354.75	7.57	40,236	1.23	11.4	351,922	20.2	448,636
CO-151	8.0	433.4	0.013	0.0033	MH-151	1,354.82	8.68	MH-155	1,353.39	7.94	16,384	0.94	4.7	351,922	13.1	448,636

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
													(%)		(%)	
CO-152	8.0	455.2	0.013	0.0048	MH-152	1,363.87	7.00	MH-153	1,361.67	7.00	12,288	0.99	2.9	425,140	10.4	541,976
CO-153	8.0	500.0	0.013	0.0033	MH-153	1,361.57	7.10	MH-154	1,359.92	7.43	12,288	0.87	3.5	351,922	11.4	448,636
CO-154	8.0	105.3	0.013	0.0033	MH-155	1,353.29	8.04	MH-124	1,352.95	9.05	28,048	1.11	8.0	351,922	16.9	448,636
CO-155	8.0	409.7	0.013	0.0038	MH-154	1,359.82	7.53	MH-157	1,358.26	7.00	27,948	1.16	7.4	378,429	16.3	482,428
CO-156	8.0	273.5	0.013	0.0084	MH-156	1,362.23	7.10	MH-154	1,359.92	7.43	15,660	1.29	2.8	563,000	10.2	717,722
CO-157	8.0	419.9	0.013	0.0033	MH-157	1,358.16	7.10	MH-150	1,356.77	8.42	27,948	1.11	7.9	351,922	16.9	448,636
CO-158	8.0	203.3	0.013	0.0033	MH-158	1,363.33	7.00	MH-159	1,362.66	7.84	10,584	0.83	3.0	351,922	10.6	448,636
CO-159	8.0	482.8	0.013	0.0042	MH-159	1,362.56	7.94	MH-121	1,360.55	9.13	10,584	0.90	2.7	395,824	10.0	504,604
CO-160	8.0	438.2	0.013	0.0050	MH-160	1,364.51	7.10	MH-198	1,362.33	7.00	15,660	1.07	3.6	432,056	11.6	550,792
CO-161	8.0	357.4	0.013	0.0033	MH-161	1,363.52	8.00	MH-156	1,362.33	7.00	15,660	0.93	4.4	352,839	12.8	449,805
CO-162	8.0	478.5	0.013	0.0033	MH-162	1,365.20	7.10	MH-161	1,363.62	7.90	15,660	0.93	4.4	351,922	12.8	448,636
CO-163	8.0	333.3	0.013	0.0128	MH-163	1,369.58	7.00	MH-162	1,365.30	7.00	15,660	1.49	2.3	694,260	9.3	885,055
CO-164	10.0	299.4	0.013	0.0024	MH-164	1,355.34	13.83	MH-117	1,354.62	12.87	156,900	1.59	28.8	544,154	32.3	693,696
CO-165	10.0	492.6	0.013	0.0024	MH-165	1,356.62	13.55	MH-164	1,355.44	13.73	156,900	1.59	28.8	544,154	32.3	693,696
CO-166	8.0	500.0	0.013	0.0033	MH-166	1,358.54	12.53	MH-165	1,356.89	13.45	89,570	1.55	25.5	351,922	30.3	448,636
CO-167	8.0	500.0	0.013	0.0033	MH-167	1,360.29	11.05	MH-166	1,358.64	12.43	89,570	1.55	25.5	351,922	30.3	448,636
CO-168	8.0	500.0	0.013	0.0033	MH-168	1,362.04	10.65	MH-167	1,360.39	10.95	89,570	1.55	25.5	351,922	30.3	448,636
CO-169	8.0	174.1	0.013	0.0033	MH-169	1,360.10	7.74	MH-170	1,359.53	7.90	10,584	0.83	3.0	351,922	10.6	448,636
CO-170	8.0	261.7	0.013	0.0033	MH-170	1,359.43	8.00	MH-171	1,358.57	8.77	10,584	0.83	3.0	351,922	10.6	448,636
CO-171	8.0	457.3	0.013	0.0033	MH-171	1,358.47	8.87	MH-172	1,356.96	9.44	10,584	0.83	3.0	351,922	10.6	448,636
CO-172	8.0	187.6	0.013	0.0033	MH-172	1,354.84	11.56	MH-173	1,354.22	8.37	28,944	1.12	8.2	351,922	17.2	448,636
CO-173	8.0	316.6	0.013	0.0033	MH-173	1,354.12	8.47	MH-174	1,353.08	10.25	28,944	1.12	8.2	351,922	17.2	448,636
CO-174	8.0	213.2	0.013	0.0033	MH-174	1,352.98	10.35	MH-114	1,352.27	9.67	28,944	1.12	8.2	351,922	17.2	448,636
CO-175	8.0	325.2	0.013	0.0105	MH-175	1,359.76	7.00	MH-176	1,356.33	7.00	18,360	1.47	2.9	629,142	10.5	802,042
CO-176	8.0	391.1	0.013	0.0033	MH-176	1,356.23	7.10	MH-172	1,354.94	11.46	18,360	0.97	5.2	351,922	13.8	448,636
CO-177	8.0	328.4	0.013	0.0052	MH-177	1,363.41	7.00	MH-178	1,361.70	7.00	10,584	0.97	2.4	442,374	9.5	563,946
CO-178	8.0	423.6	0.013	0.0033	MH-178	1,361.60	7.10	MH-169	1,360.20	7.64	10,584	0.83	3.0	351,922	10.6	448,636
CO-179	8.0	307.8	0.013	0.0041	MH-179	1,361.59	7.00	MH-180	1,360.33	7.00	8,970	0.85	2.3	391,241	9.3	498,761
CO-180	8.0	497.4	0.013	0.0036	MH-180	1,360.23	7.10	MH-116	1,358.45	7.00	8,970	0.81	2.4	366,948	9.6	467,792
CO-181	8.0	281.4	0.013	0.0065	MH-181	1,359.33	7.00	MH-182	1,357.51	7.00	8,970	1.00	1.8	493,241	8.3	628,792
CO-182	8.0	359.7	0.013	0.0033	MH-182	1,357.41	7.10	MH-115	1,356.22	7.19	8,970	0.79	2.5	351,922	9.8	448,636
CO-183	8.0	210.7	0.013	0.0033	MH-183	1,363.64	7.00	MH-184	1,362.95	7.10	16,416	0.94	4.7	351,922	13.1	448,636
CO-184	8.0	497.3	0.013	0.0033	MH-184	1,362.85	7.20	MH-118	1,361.20	7.88	16,416	0.94	4.7	351,922	13.1	448,636
CO-185	8.0	348.3	0.013	0.0033	MH-165	1,360.54	9.79	MH-185	1,361.69	12.64	67,330	1.43	19.1	351,922	26.2	448,636
CO-186	8.0	456.1	0.013	0.0033	MH-186	1,363.64	10.26	MH-168	1,362.14	10.55	89,570	1.55	25.5	351,922	30.3	448,636
CO-187	8.0	462.7	0.013	0.0033	MH-185	1,361.79	12.54	MH-187	1,363.32	12.55	44,650	1.27	12.7	351,922	21.3	448,636
CO-188	8.0	409.0	0.013	0.0033	MH-187	1,363.42	12.45	MH-188	1,364.77	12.57	44,650	1.27	12.7	351,922	21.3	448,636
CO-189	8.0	408.6	0.013	0.0033	MH-188	1,366.24	11.09	MH-189	1,367.59	11.56	21,970	1.03	6.2	351,922	15.1	448,636
CO-190	8.0	305.1	0.013	0.0033	MH-190	1,368.02	7.00	MH-191	1,367.01	7.32	22,680	1.04	6.4	351,922	15.3	448,636

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
									1 945 51				(%)	254 000	(%)	110.000
CO-191	8.0	424.1	0.013	0.0033	MH-191	1,366.91	/.42	MH-185	1,365.51	8.82	22,680	1.04	6.4	351,922	15.3	448,636
CO-192	8.0	414.4	0.013	0.0033	MH-188	1,364.87	12.4/	MH-192	1,366.23	7.10	22,680	1.04	6.4	351,922	15.3	448,636
CO-193	8.0	347.6	0.013	0.01/3	MH-192	1,366.33	7.00	MH-193	1,3/2.34	7.00	22,680	1.86	2.8	805,244	10.3	1,026,540
CO-194	8.0	434.3	0.013	0.0033	MH-194	1,3/2.33	7.00	MH-195	1,3/0.90	8.43	10,985	0.84	3.1	351,922	10.8	448,636
CO-195	8.0	361.1	0.013	0.0033	MH-195	1,368.88	10.45	MH-189	1,367.69	11.46	21,970	1.03	6.2	351,922	15.1	448,636
CO-196	8.0	217.7	0.013	0.0033	MH-196	1,370.44	7.00	MH-197	1,369.72	9.61	10,985	0.84	3.1	351,922	10.8	448,636
CO-197	8.0	193.5	0.013	0.0033	MH-197	1,369.62	9.71	MH-195	1,368.98	10.35	10,985	0.84	3.1	351,922	10.8	448,636
CO-198	8.0	164.1	0.013	0.0044	MH-198	1,362.23	7.10	MH-120	1,361.51	7.00	15,660	1.03	3.8	407,607	11.9	519,625
CO-199	8.0	480.0	0.013	0.0049	MH-199	1,367.64	7.00	MH-200	1,365.30	7.00	10,368	0.95	2.4	427,928	9.5	545,530
CO-200	8.0	346.1	0.013	0.0033	MH-200	1,365.20	7.10	MH-201	1,364.06	12.83	10,368	0.82	2.9	351,922	10.5	448,636
CO-201	8.0	307.0	0.013	0.0033	MH-201	1,363.96	12.93	MH-119	1,362.94	8.39	10,368	0.82	2.9	351,922	10.5	448,636
CO-202	8.0	500.0	0.013	0.0033	MH-202	1,349.69	10.28	MH-113	1,348.04	10.78	56,612	1.36	16.1	351,922	24.0	448,636
CO-203	8.0	500.0	0.013	0.0033	MH-203	1,351.44	7.69	MH-202	1,349.79	10.18	36,236	1.19	10.3	351,922	19.3	448,636
CO-204	8.0	370.9	0.013	0.0033	MH-204	1,352.76	8.35	MH-203	1,351.54	7.59	36,236	1.19	10.3	351,922	19.3	448,636
CO-205	8.0	358.4	0.013	0.0033	MH-205	1,354.05	9.29	MH-204	1,352.86	8.25	15,860	0.94	4.5	351,922	12.9	448,636
CO-206	8.0	359.9	0.013	0.0033	MH-206	1,355.33	7.00	MH-205	1,354.15	9.19	15,860	0.94	4.5	351,922	12.9	448,636
CO-207	8.0	440.5	0.013	0.0033	MH-207	1,356.59	7.60	MH-116	1,355.14	10.31	36,236	1.19	10.3	351,922	19.3	448,636
CO-208	8.0	459.7	0.013	0.0033	MH-208	1,358.21	7.10	MH-207	1,356.69	7.50	15,860	0.94	4.5	351,922	12.9	448,636
CO-209	8.0	320.0	0.013	0.0063	MH-209	1,360.33	7.00	MH-208	1,358.31	7.00	15,860	1.17	3.3	486,840	11.0	620,632
CO-210	8.0	403.7	0.013	0.0033	MH-210	1,360.49	9.66	MH-118	1,359.16	9.92	13,520	0.89	3.8	351,922	11.9	448,636
CO-211	8.0	488.4	0.013	0.0033	MH-211	1,362.21	8.13	MH-210	1,360.59	9.56	13,520	0.89	3.8	351,922	11.9	448,636
CO-212	8.0	311.5	0.013	0.0033	MH-212	1,363.33	7.00	MH-211	1,362.31	8.03	13,520	0.89	3.8	351,922	11.9	448,636
CO-213	8.0	488.1	0.013	0.0033	MH-213	1,364.33	7.00	MH-119	1,362.72	8.61	13,520	0.89	3.8	351,922	11.9	448,636
CO-214	8.0	268.2	0.013	0.0033	MH-214	1,363.08	10.26	OF-5 (EX MH-28284)	1,362.19	12.78	71,130	1.45	15.9	448,583	26.9	448,583
CO-215	8.0	340.8	0.013	0.0033	MH-215	1,364.30	8.81	MH-214	1,363.18	10.16	42,150	1.25	9.4	448,681	20.7	448,681
CO-216	8.0	453.5	0.013	0.0033	MH-216	1,365.90	9.51	MH-215	1,364.40	8.71	42,150	1.25	9.4	448,548	20.7	448,548
CO-217	8.0	446.0	0.013	0.0045	MH-217	1,371.25	7.00	MH-218	1,369.23	7.00	14,490	1.02	3.5	412,547	11.4	525,922
CO-218	8.0	375.5	0.013	0.0059	MH-218	1,369.13	7.10	MH-219	1,366.93	7.00	14,490	1.11	3.1	468,685	10.7	597,488
CO-219	8.0	344.9	0.013	0.0033	MH-219	1,366.83	7.10	MH-220	1,365.70	8.64	28,980	1.12	8.2	351,922	17.2	448,636
CO-220	8.0	279.5	0.013	0.0033	MH-220	1,365.60	8.74	MH-214	1,364.67	8.66	28,980	1.12	8.2	351,922	17.2	448,636
CO-221	8.0	360.2	0.013	0.0033	MH-221	1,372.02	7.00	MH-222	1,370.83	7.01	21,075	1.02	4.7	449,638	14.7	449,638
CO-222	8.0	365.3	0.013	0.0033	MH-222	1,370.73	7.11	MH-223	1,369.52	7.00	21,075	1.02	4.7	448,737	14.8	448,737
CO-223	8.0	310.3	0.013	0.0033	MH-223	1,369.42	7.10	MH-224	1,368.40	7.01	42,150	1.25	9.4	448,616	20.7	448,616
CO-224	8.0	284.7	0.013	0.0033	MH-224	1,368.30	7.11	MH-225	1,367.36	7.01	42,150	1.25	9.4	448,535	20.7	448,535
CO-225	8.0	382.0	0.013	0.0033	MH-225	1,367.26	7.10	MH-216	1,366.00	9.41	42,150	1.25	9.4	, 449,394	20.7	449,394
CO-226	8.0	406.2	0.013	0.0074	MH-226	1,378.33	7.00	MH-227	1,375.33	7.00	11,700	1.13	2.2	, 526,451	9.2	671,128
CO-227	8.0	345.6	0.013	0.0035	MH-227	1,375.23	7.10	MH-228	1,374.01	7.00	11,700	0.87	3.2	364,615	10.9	464,817

Label	Diam (in)	Length (ft)	Mannin a's n	Slope (ft/ft)	Start Node	Invert (Start)	Cover (Start)	Stop Node	Invert (Stop)	Cover (Stop)	Flow (gal/day)	Velocity (ft/s)	Flow / Capacity	Capacity (Design)	Depth (Normal) /	Capacity (Full Flow)
	()	()	9011	(,)		(ft)	(ft)		(ft)	(ft)	(90.,007)	(,)	(Design)	(gal/day)	Diam	(gal/day)
													(%)		(%)	
CO-228	8.0	485.9	0.013	0.0096	MH-228	1,373.91	7.10	OF-6 (EX MH 28286)	1,369.26	13.46	23,400	1.53	3.9	599,232	12.0	763,912
CO-229	8.0	500.0	0.013	0.0033	MH-186	1,363.74	10.16	MH-229	1,365.39	10.07	89,570	1.55	25.5	351,922	30.3	448,636
CO-230	8.0	500.0	0.013	0.0033	MH-229	1,365.49	9.97	MH-230	1,367.14	11.19	89,570	1.55	25.5	351,922	30.3	448,636
CO-231	8.0	500.0	0.013	0.0033	MH-230	1,367.24	11.09	MH-231	1,368.89	11.53	67,177	1.43	19.1	351,922	26.1	448,636
CO-232	8.0	500.0	0.013	0.0033	MH-231	1,368.99	11.43	MH-232	1,370.64	11.42	67,177	1.43	19.1	351,922	26.1	448,636
CO-233	8.0	500.0	0.013	0.0033	MH-232	1,370.74	11.32	MH-233	1,372.39	11.94	44,785	1.27	12.7	351,922	21.3	448,636
CO-234	8.0	500.0	0.013	0.0033	MH-233	1,372.49	11.84	MH-234	1,374.14	9.39	44,785	1.27	12.7	351,922	21.3	448,636
CO-235	8.0	500.0	0.013	0.0033	MH-234	1,374.24	9.29	MH-235	1,375.89	7.10	22,392	1.04	6.4	351,922	15.2	448,636
CO-236	8.0	379.9	0.013	0.0073	MH-235	1,375.99	7.00	MH-236	1,378.78	7.00	22,392	1.37	4.3	525,062	12.5	669,359
CO-237	18.0	600.0	0.013	0.0029	MH-237	1,358.82	14.68	MH-119	1,357.08	13.42	258,850	1.85	9.0	2,867,752	18.0	3,655,860
CO-238	18.0	145.7	0.013	0.0029	MH-238	1,359.34	14.76	MH-237	1,358.92	14.58	258,850	1.85	9.0	2,867,752	18.0	3,655,860
CO-239	18.0	623.0	0.013	0.0035	MH-239	1,361.62	15.48	MH-238	1,359.44	14.66	258,850	1.98	8.2	3,150,117	17.2	4,015,825
CO-240	8.0	98.2	0.013	0.0292	MH-240	1,381.83	12.74	OF-7 (EX MH 27581)	1,378.96	15.87	17,810	2.08	1.7	1,046,563	8.1	1,334,176
CO-241	8.0	227.0	0.013	0.0033	MH-241	1,382.67	12.47	MH-240	1,381.93	12.64	17,810	0.97	5.1	351,922	13.6	448,636
CO-242	8.0	325.3	0.013	0.0033	MH-242	1,388.81	8.69	MH-241	1,387.73	7.41	8,905	0.79	2.5	351,922	9.8	448,636
CO-243	8.0	253.6	0.013	0.0033	MH-243	1,389.74	7.00	MH-242	1,388.91	8.59	8,905	0.79	2.5	351,922	9.8	448,636
CO-244	8.0	256.6	0.013	0.0033	MH-244	1,384.81	7.00	MH-245	1,383.96	8.08	8,905	0.79	2.5	351,922	9.8	448,636
CO-245	8.0	330.0	0.013	0.0033	MH-245	1,383.86	8.18	MH-241	1,382.77	12.37	8,905	0.79	2.5	351,922	9.8	448,636
CO-247	18.0	600.0	0.013	0.0011	MH-247	1,362.38	16.90	MH-239	1,361.72	15.38	258,850	1.31	11.5	2,251,577	22.9	2,251,577
CO-248	18.0	600.0	0.013	0.0011	MH-248	1,363.14	19.05	MH-247	1,362.48	16.80	241,083	1.29	10.7	2,251,577	22.1	2,251,577
CO-249	18.0	515.4	0.013	0.0011	MH-249	1,363.81	21.37	MH-248	1,363.24	18.95	241,083	1.29	10.7	2,251,587	22.1	2,251,587
CO-250	18.0	600.0	0.013	0.0011	MH-250	1,364.57	22.34	MH-249	1,363.91	21.27	0	0.00	0.0	2,251,577	(N/A)	2,251,577
CO-251	18.0	600.0	0.013	0.0011	MH-251	1,365.33	23.91	MH-250	1,364.67	22.24	0	0.00	0.0	2,251,577	(N/A)	2,251,577
CO-252	12.0	334.0	0.013	0.0041	MH-252	1,365.76	20.52	MH-249	1,364.41	21.27	241,083	2.13	20.9	1,150,800	27.4	1,467,060
CO-253	12.0	497.2	0.013	0.0019	MH-253	1,366.81	18.25	MH-252	1,365.86	20.42	217,163	1.58	27.6	787,304	31.6	1,003,669
CO-254	8.0	483.0	0.013	0.0033	MH-254	1,370.54	18.66	MH-253	1,368.95	16.44	114,940	1.66	32.7	351,922	34.5	448,636
CO-255	8.0	500.0	0.013	0.0033	MH-255	1,372.29	17.62	MH-254	1,370.64	18.56	114,940	1.66	32.7	351,922	34.5	448,636
CO-256	8.0	500.0	0.013	0.0033	MH-255	1,372.39	17.52	MH-256	1,374.04	18.78	87,900	1.54	25.0	351,922	30.0	448,636
CO-257	8.0	500.0	0.013	0.0033	MH-256	1,374.14	18.68	MH-257	1,375.79	17.41	60,860	1.39	17.3	351,922	24.9	448,636
CO-258	8.0	500.0	0.013	0.0033	MH-257	1,375.89	17.31	MH-258	1,377.54	16.69	60,860	1.39	17.3	351,922	24.9	448,636
CO-259	8.0	500.0	0.013	0.0033	MH-258	1,377.64	16.59	MH-259	1,379.29	16.10	31,105	1.14	8.8	351,922	17.8	448,636
CO-260	8.0	500.0	0.013	0.0033	MH-259	1,379.39	16.00	MH-260	1,381.04	16.94	31,105	1.14	8.8	351,922	17.8	448,636
CO-261	8.0	500.0	0.013	0.0033	MH-260	1,381.14	16.84	MH-261	1,382.79	17.15	22,540	1.04	6.4	351,922	15.2	448,636
CO-262	8.0	378.5	0.013	0.0033	MH-261	1,382.89	17.05	MH-262	1,384.14	7.00	22,540	1.04	6.4	351,922	15.2	448,636
CO-263	8.0	500.0	0.013	0.0039	MH-263	1,389.18	7.10	MH-258	1,387.23	7.00	16,380	1.00	4.3	383,015	12.5	488,274
CO-264	8.0	500.0	0.013	0.0048	MH-264	1,391.67	7.00	MH-263	1,389.28	7.00	16,380	1.07	3.9	423,225	12.0	539,535
CO-265	8.0	500.0	0.013	0.0033	MH-265	1,386.98	7.10	MH-256	1,385.33	7.49	17,290	0.96	4.9	351,922	13.4	448,636

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

19-1003_1833 SewerCAD (SUB 06).stsw

FlexTable: Conduit Table

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
				0.00.16		1 000 10			1 2 2 7 2 2		17.000	1.00	(%)		(%)	500.045
CO-266	8.0	500.0	0.013	0.0046	MH-266	1,389.40	7.00	MH-265	1,387.08	7.00	17,290	1.08	4.1	417,350	12.3	532,045
CO-267	8.0	497.9	0.013	0.0049	MH-267	1,385.36	7.00	MH-255	1,382.91	7.00	17,290	1.11	4.0	429,681	12.2	547,765
CO-268	8.0	500.0	0.013	0.0033	MH-268	1,380.23	7.10	MH-252	1,378.58	8.03	23,920	1.06	6.8	351,922	15.7	448,636
CO-269	8.0	500.0	0.013	0.0081	MH-269	1,384.37	/.33	MH-268	1,380.33	7.00	11,960	1.1/	2.2	550,566	9.1	/01,8/1
CO-270	8.0	296.6	0.013	0.0033	MH-270	1,385.45	/.00	MH-269	1,384.47	7.23	11,960	0.86	3.4	351,922	11.2	448,636
CO-271	8.0	358.2	0.013	0.0033	MH-271	1,382.61	7.87	MH-256	1,381.43	11.39	9,750	0.81	2.8	351,922	10.2	448,636
CO-272	8.0	497.6	0.013	0.0033	MH-272	1,384.35	7.00	MH-271	1,382.71	7.77	9,750	0.81	2.8	351,922	10.2	448,636
CO-273	8.0	350.0	0.013	0.0033	MH-273	1,381.42	7.00	MH-255	1,380.26	9.65	9,750	0.81	2.8	351,922	10.2	448,636
CO-274	8.0	349.2	0.013	0.0033	MH-274	1,382.86	9.66	MH-258	1,381.70	12.53	13,375	0.89	3.8	351,922	11.9	448,636
CO-275	8.0	504.6	0.013	0.0033	MH-275	1,384.62	7.00	MH-274	1,382.96	9.56	8,565	0.77	2.4	351,922	9.6	448,636
CO-276	8.0	374.2	0.013	0.0033	MH-276	1,385.47	8.67	MH-260	1,384.23	13.75	8,565	0.77	2.4	351,922	9.6	448,636
CO-277	8.0	289.6	0.013	0.0033	MH-277	1,386.52	7.00	MH-276	1,385.57	8.57	8,565	0.77	2.4	351,922	9.6	448,636
CO-278	8.0	499.9	0.013	0.0033	MH-278	1,368.89	15.89	MH-253	1,367.24	18.15	102,223	1.61	29.0	351,922	32.4	448,636
CO-279	8.0	500.0	0.013	0.0033	MH-279	1,370.64	15.46	MH-278	1,368.99	15.79	84,457	1.52	24.0	351,922	29.4	448,636
CO-280	8.0	500.0	0.013	0.0033	MH-280	1,372.39	15.26	MH-279	1,370.74	15.36	74,707	1.48	21.2	351,922	27.6	448,636
CO-281	8.0	500.0	0.013	0.0033	MH-281	1,374.14	14.70	MH-280	1,372.49	15.16	47,190	1.29	13.4	351,922	21.9	448,636
CO-282	8.0	500.0	0.013	0.0033	MH-282	1,375.89	13.89	MH-281	1,374.24	14.60	47,190	1.29	13.4	351,922	21.9	448,636
CO-283	8.0	500.0	0.013	0.0033	MH-283	1,377.64	14.24	MH-282	1,375.99	13.79	22,815	1.04	6.5	351,922	15.3	448,636
CO-284	8.0	500.0	0.013	0.0033	MH-284	1,379.39	8.56	MH-283	1,377.74	14.14	22,815	1.04	6.5	351,922	15.3	448,636
CO-285	8.0	352.9	0.013	0.0038	MH-285	1,380.44	7.00	MH-279	1,379.10	7.00	9,750	0.85	2.6	377,764	9.9	481,581
CO-286	8.0	365.4	0.013	0.0033	MH-286	1,381.26	8.30	MH-280	1,380.05	7.60	9,750	0.81	2.8	351,922	10.2	448,636
CO-287	8.0	500.0	0.013	0.0033	MH-287	1,383.01	7.00	MH-286	1,381.36	8.20	9,750	0.81	2.8	351,922	10.2	448,636
CO-288	8.0	366.2	0.013	0.0033	MH-288	1,382.24	7.10	MH-282	1,381.03	8.75	10,595	0.83	3.0	351,922	10.6	448,636
CO-289	8.0	500.1	0.013	0.0037	MH-289	1,384.20	7.00	MH-288	1,382.34	7.00	9,035	0.83	2.4	373,880	9.5	476,629
CO-290	8.0	369.3	0.013	0.0094	MH-290	1,384.44	7.10	MH-284	1,380.96	7.00	9,035	1.13	1.5	594,914	7.7	758,407
CO-291	8.0	291.6	0.013	0.0063	MH-291	1,386.36	7.00	MH-290	1,384.54	7.00	9,035	0.99	1.9	484,584	8.4	617,756
CO-292	8.0	454.4	0.013	0.0033	MH-292	1,375.09	7.49	MH-278	1,373.59	11.19	17,767	0.97	5.0	351,922	13.6	448,636
CO-293	8.0	500.0	0.013	0.0033	MH-293	1,376.84	7.00	MH-292	1,375.19	7.39	17,767	0.97	5.0	351,922	13.6	448,636
CO-294	8.0	309.3	0.013	0.0033	MH-294	1,378.76	7.47	MH-280	1,377.73	9.92	17,767	0.97	5.0	351,922	13.6	448,636
CO-295	8.0	500.0	0.013	0.0033	MH-295	1,380.51	7.00	MH-294	1,378.86	7.37	17,767	0.97	5.0	351,922	13.6	448,636
CO-296	8.0	287.8	0.013	0.0033	MH-296	1,381.66	9.50	MH-282	1,380.71	9.07	13,780	0.90	3.9	351,922	12.0	448,636
CO-297	8.0	500.0	0.013	0.0033	MH-297	1,383.41	7.00	MH-296	1,381.76	9.40	13,780	0.90	3.9	351,922	12.0	448,636
CO-298	8.0	252.1	0.013	0.0033	MH-298	1,380.32	8.16	MH-284	1,379.49	8.46	13,780	0.90	3.9	351,922	12.0	448,636
CO-299	8.0	500.0	0.013	0.0033	MH-299	1,382.07	7.00	MH-298	1,380.42	8.06	13,780	0.90	3.9	351,922	12.0	448,636
CO-300	8.0	436.8	0.013	0.0033	MH-300	1,373.70	7.10	MH-247	1,372.26	7.85	17,767	0.97	5.0	351,922	13.6	448,636
CO-301	8.0	500.0	0.013	0.0034	MH-301	1,375.53	7.00	MH-300	1,373.80	7.00	17,767	0.98	4.9	359,765	13.4	458,635
CO-302	8.0	400.0	0.013	0.0033	MH-302	1,363.12	7.00	MH-303	1,361.80	11.43	8,192	0.77	2.3	351,922	9.4	448,636
CO-303	8.0	346.7	0.013	0.0062	MH-303	1,361.70	11.53	MH-304	1,359.56	7.00	8,192	0.96	1.7	481,383	8.1	613,675
CO-304	8.0	400.0	0.013	0.0063	MH-304	1,359.46	7.10	MH-305	1,356.95	7.00	8,192	0.96	1.7	485,695	8.0	619,173

Label	Diam (in)	Length (ft)	Mannin g's n	Slope (ft/ft)	Start Node	Invert (Start) (ft)	Cover (Start) (ft)	Stop Node	Invert (Stop) (ft)	Cover (Stop) (ft)	Flow (gal/day)	Velocity (ft/s)	Flow / Capacity (Design) (%)	Capacity (Design) (gal/day)	Depth (Normal) / Diam (%)	Capacity (Full Flow) (gal/day)
CO-305	8.0	400.0	0.013	0.0048	MH-305	1,356.85	7.10	MH-151	1,354.92	8.58	8,192	0.88	1.9	425,060	8.6	541,873
CO-306	8.0	300.0	0.013	0.0033	MH-306	1,355.91	7.42	MH-151	1,354.92	8.58	8,192	0.77	2.3	351,922	9.4	448,636
CO-307	8.0	400.0	0.013	0.0033	MH-307	1,357.33	7.00	MH-306	1,356.01	7.32	8,192	0.77	2.3	351,922	9.4	448,636
CO-308	8.0	300.0	0.013	0.0051	MH-308	1,366.15	7.00	MH-160	1,364.61	7.00	15,660	1.09	3.6	438,929	11.5	559,554
CO-309	8.0	500.0	0.013	0.0180	MH-309	1,391.91	7.10	OF-8 (EX MH 28291)	1,382.90	16.03	17,420	1.74	2.1	822,412	9.0	1,048,425
CO-310	8.0	410.0	0.013	0.0070	MH-310	1,394.90	7.00	MH-309	1,392.01	7.00	17,420	1.25	3.4	514,184	11.2	655,491
CO-311	10.0	722.5	0.013	0.0024	MH-311	1,364.19	10.98	OF-5 (EX MH-28284)	1,362.46	12.35	0	0.00	0.0	543,511	(N/A)	692,877

Active Scenario: Avg Flow (Conservative Densities)

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (gal/day)
OF-1 (EX-MH-28278)	1,353.11	1,342.34	1,342.51	88,376
OF-2 (EX-MH-28279)	1,358.39	1,345.34	1,345.57	206,580
OF-3 (EX MH-28280)	1,362.45	1,349.04	1,349.22	151,928
OF-4 (EX-MH-28282)	1,369.65	1,356.19	1,356.30	39,670
OF-5 (EX MH-28284)	1,375.64	1,362.19	1,362.46	71,130
OF-6 (EX MH 28286)	1,383.39	1,369.26	1,369.34	23,400
OF-7 (EX MH 27581)	1,395.50	1,378.96	1,379.01	17,810
OF-8 (EX MH 28291)	1,399.60	1,382.90	1,382.96	17,420
OF-9 (EX-MH-25)	1,331.29	1,321.98	1,322.39	825,678

PEAK FLOW

- 1. **Master Manhole Report** This provides detailed information such as the rim elevation and structure depth of each manhole within the system.
- 2. **Master Pipe Report** This provides detailed information such as the velocity, capacity, and percent full in each pipe in the system for the peak flow. Please note that the "Average Velocity" presented in the Master Pipe Report is actual velocity and not full flow velocity.
- 3. **Master Outlet Report** This provides the invert, structure depth and flow at the outlet of the system.

Active Scenario: Peak Flow

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Depth (Structure) (ft)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
MH-1	1,380.00	1,372.33	7.67	46,008	1,372.48	1,372.48
MH-2	1,380.00	1,371.26	8.74	46,008	1,371.40	1,371.40
MH-3	1,375.07	1,367.30	7.77	46,008	1,367.42	1,367.42
MH-4	1,373.32	1,365.56	7.77	46,008	1,365.70	1,365.70
MH-5	1,376.61	1,364.57	12.04	98,496	1,364.77	1,364.77
MH-6	1,374.45	1,362.36	12.09	179,496	1,362.65	1,362.65
MH-7	1,369.00	1,360.01	8.99	214,488	1,360.33	1,360.33
MH-8	1,368.00	1,359.27	8.73	265,176	1,359.64	1,359.64
MH-9	1,367.02	1,358.75	8.27	265,176	1,359.06	1,359.06
MH-10	1,366.28	1,356.71	9.57	386,664	1,357.15	1,357.15
MH-11	1,363.00	1,355.07	7.93	455,784	1,355.56	1,355.56
MH-12	1,362.14	1,353.90	8.23	455,784	1,354.40	1,354.40
MH-13	1,362.14	1,352.72	9.41	455,784	1,353.09	1,353.09
MH-14	1,378.00	1,370.33	7.67	52,488	1,370.49	1,370.49
MH-15	1,380.00	1,368.74	11.26	52,488	1,368.89	1,368.89
MH-16	1,369.13	1,361.46	7.67	34,560	1,361.59	1,361.59
MH-17	1,366.19	1,359.74	6.45	34,560	1,359.87	1,359.87
MH-18	1,364.69	1,358.31	6.38	69,120	1,358.49	1,358.49
MH-19	1,363.29	1,356.56	6.73	69,120	1,356.72	1,356.72
MH-20	1,386.21	1,378.55	7.67	25,344	1,378.64	1,378.64
MH-21	1,375.00	1,367.23	7.77	25,344	1,367.33	1,367.33
MH-22	1,371.00	1,363.23	7.77	50,688	1,363.38	1,363.38
MH-23	1,369.35	1,361.58	7.77	50,688	1,361.72	1,361.72
MH-24	1,373.00	1,365.33	7.67	34,992	1,365.44	1,365.44
MH-25	1,369.86	1,362.09	7.77	34,992	1,362.20	1,362.20
MH-26	1,376.85	1,369.18	7.67	34,992	1,369.30	1,369.30
MH-27	1,375.37	1,367.61	7.77	34,992	1,367.73	1,367.73
MH-28	1,373.00	1,365.33	7.67	46,008	1,365.48	1,365.48
MH-29	1,373.00	1,364.35	8.65	46,008	1,364.47	1,364.47
MH-30	1,374.02	1,366.36	7.67	46,008	1,366.48	1,366.48
MH-31	1,371.61	1,363.85	7.77	46,008	1,363.99	1,363.99
MH-32	1,373.00	1,365.33	7.67	75,480	1,365.49	1,365.49
MH-33	1,366.00	1,358.23	7.77	75,480	1,358.42	1,358.42
MH-34	1,372.83	1,365.06	7.77	50,688	1,365.21	1,365.21
MH-35	1,378.07	1,369.93	8.14	46,008	1,370.05	1,370.05
MH-36	1,373.00	1,361.24	11.76	179,496	1,361.53	1,361.53
MH-37	1,366.92	1,356.01	10.90	386,664	1,356.46	1,356.46
MH-38	1,368.50	1,360.83	7.67	38,640	1,360.97	1,360.97
MH-39	1,367.30	1,359.53	7.77	38,640	1,359.67	1,359.67
MH-40	1,368.12	1,358.22	9.91	38,640	1,358.35	1,358.35
MH-41	1,369.70	1,357.37	12.33	119,010	1,357.59	1,357.59
MH-42	1,375.00	1,367.33	7.67	80,370	1,367.52	1,367.52
MH-43	1,374.04	1,365.98	8.05	80,370	1,366.17	1,366.17
MH-44	1,371.70	1,363.93	7.77	80,370	1,364.12	1,364.12
MH-45	1,353.27	1,343.99	9.28	265,128	1,344.36	1,344.36
MH-46	1,355.14	1,345.74	9.40	125,184	1,345.98	1,345.98
MH-47	1,355.26	1,347.49	7.77	125,184	1,347.73	1,347.73
MH-48	1,356.56	1,348.79	7.77	93,888	1,349.00	1,349.00
MH-49	1,357.70	1,349.93	7.77	93,888	1,350.13	1,350.13

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019 Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC. M. Jessop Page 1 of 7

Active Scenario: Peak Flow

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Depth (Structure) (ft)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
MH-50	1 358 81	1 351 04	7 77	62 592	1 351 21	1 351 21
MH-51	1.360.09	1.352.32	7.77	62,592	1.352.49	1.352.49
MH-52	1.361.94	1.354.17	7.77	31,296	1.354.29	1.354.29
MH-53	1.363.69	1.355.92	7.77	31,296	1.356.04	1.356.04
MH-54	1.372.00	1.362.24	9.76	134.178	1.362.49	1.362.49
MH-55	1.369.11	1.361.08	8.03	134.178	1.361.30	1.361.30
MH-56	1.368.04	1.359.11	8.93	268,440	1.359.49	1.359.49
MH-57	1,368.72	1,357.74	10.97	268,440	1,358.12	1,358.12
MH-58	1,366.00	1,352.80	13.20	359,286	1,353.22	1,353.22
MH-59	1,364.52	1,351.50	13.02	393,630	1,351.85	1,351.85
MH-60	1,361.39	1,350.15	11.24	471,390	1,350.65	1,350.65
MH-61	1,358.00	1,348.87	9.13	500,550	1,349.26	1,349.26
MH-62	1,355.11	1,347.18	7.93	529,710	1,347.72	1,347.72
MH-63	1,357.00	1,346.29	10.71	619,740	1,346.86	1,346.86
MH-64	1,366.00	1,358.33	7.67	45,015	1,358.48	1,358.48
MH-65	1,367.32	1,357.03	10.28	45,015	1,357.16	1,357.16
MH-66	1,362.15	1,354.38	7.77	90,030	1,354.55	1,354.55
MH-67	1,358.75	1,350.98	7.77	90,030	1,351.16	1,351.16
MH-68	1,369.67	1,362.00	7.67	47,430	1,362.13	1,362.13
MH-69	1,366.86	1,359.10	7.77	47,430	1,359.24	1,359.24
MH-70	1,366.00	1,358.07	7.93	47,430	1,358.21	1,358.21
MH-71	1,372.00	1,364.33	7.67	47,430	1,364.47	1,364.47
MH-72	1,370.00	1,362.23	7.77	47,430	1,362.38	1,362.38
MH-73	1,369.00	1,361.23	7.77	47,430	1,361.36	1,361.36
MH-74	1,374.00	1,366.33	7.67	33,810	1,366.44	1,366.44
MH-75	1,372.00	1,364.23	7.77	33,810	1,364.36	1,364.36
MH-76	1,371.13	1,363.37	7.77	33,810	1,363.49	1,363.49
MH-77	1,360.15	1,352.48	/.6/	29,160	1,352.60	1,352.60
MH-78	1,359.50	1,351.82	7.68	29,160	1,351.94	1,351.94
MH-79	1,357.75	1,349.98	7.77	29,160	1,350.09	1,350.09
MIL 01	1,350.10	1,348.23	7.94	29,160	1,348.34	1,348.34
мп-91 МП-92	1,359.81	1,352.14	/.0/ רד ד	29,100	1,352.25	1,352.25
ML 92	1,336.00	1,330.23	7.77	29,100	1,330.34	1,550.54
MH-84	1,305.00	1,357.95	7.07	43 416	1,556.07	1,356.07
MH-85	1,364.05	1,355,31	8.75	43 416	1,355.45	1,350.47
MH-86	1 363 65	1 354 15	9.51	77 760	1,555.45	1 354 33
MH-87	1,360,89	1,352,71	8.18	77,760	1,352,90	1,352,90
MH-88	1.361.00	1.351.53	9.47	77,760	1.351.72	1.351.72
MH-89	1,363.97	1,356.30	7.67	34.344	1.356.42	1.356.42
MH-90	1,363.00	1,355.23	7.77	34.344	1,355.36	1,355.36
MH-91	1,363.63	1,355.96	7.67	43,416	1,356.10	1,356.10
MH-92	1,364.73	1,354.45	10.28	43.416	1,354.59	1,354.59
MH-93	1,372.19	1,364.53	7.67	43,416	1,364.67	1,364.67
MH-94	1,371.07	1,360.62	10.45	86,832	1,360.82	1,360.82
MH-95	1,374.00	1,366.33	7.67	50,184	1,366.46	1,366.46
MH-96	1,372.02	1,364.26	7.77	100,368	1,364.46	1,364.46
MH-97	1,373.00	1,365.33	7.67	43,416	1,365.45	1,365.45
MH-98	1,370.00	1,362.23	7.77	43,416	1,362.37	1,362.37

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Active Scenario: Peak Flow

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
	(ft)	(ft)	(ft)		(ft)	(ft)
MH-99	1,376.18	1,368.52	7.67	50,184	1,368.64	1,368.64
MH-100	1,374.16	1,366.40	7.77	50,184	1,366.54	1,366.54
MH-101	1,333.76	1,323.89	9.86	2,477,034	1,324.69	1,324.69
MH-102	1,334.48	1,325.73	8.74	2,477,034	1,326.56	1,326.56
MH-103	1,338.87	1,327.57	11.30	2,477,034	1,328.40	1,328.40
MH-104	1,342.47	1,329.41	13.06	2,477,034	1,330.24	1,330.24
MH-105	1,342.70	1,331.25	11.44	2,477,034	1,332.08	1,332.08
MH-106	1,342.47	1,332.05	10.42	2,477,034	1,332.87	1,332.87
MH-107	1,345.14	1,333.89	11.26	2,477,034	1,334.71	1,334.71
MH-108	1,349.32	1,335.73	13.59	2,477,034	1,336.55	1,336.55
MH-109	1,350.01	1,337.57	12.44	2,477,034	1,338.39	1,338.39
MH-110	1,355.10	1,339.41	15.69	2,477,034	1,340.23	1,340.23
MH-111	1,356.14	1,339.84	16.31	2,477,034	1,340.66	1,340.66
MH-112	1,359.04	1,346.43	12.61	2,145,606	1,347.12	1,347.12
MH-113	1,359.48	1,347.11	12.38	1,827,918	1,347.83	1,347.83
MH-114	1,362.61	1,349.77	12.84	1,658,082	1,350.47	1,350.47
MH-115	1,364.08	1,350.72	13.37	1,571,250	1,351.40	1,351.40
MH-116	1,366.12	1,352.30	13.82	1,544,340	1,352.98	1,352.98
MH-117	1,368.33	1,353.85	14.47	1,408,722	1,354.50	1,354.50
MH-118	1,369.75	1,355.16	14.58	938,022	1,355.64	1,355.64
MH-119	1,372.00	1,356.98	15.02	848,214	1,357.47	1,357.47
MH-120	1,369.17	1,361.41	7.77	46,980	1,361.55	1,361.55
MH-121	1,370.35	1,360.45	9.90	78,732	1,360.62	1,360.62
MH-122	1,366.78	1,358.16	8.61	113,724	1,358.39	1,358.39
MH-123	1,364.00	1,356.23	7.77	113,724	1,356.45	1,356.45
MH-124	1,362.66	1,352.85	9.82	197,868	1,353.16	1,353.16
MH-125	1,364.02	1,351.26	12.76	239,988	1,351.61	1,351.61
MH-126	1,361.92	1,349.51	12.41	295,068	1,349.91	1,349.91
MH-127	1,360.00	1,347.60	12.40	317,688	1,347.99	1,347.99
MH-128	1,361.60	1,353.94	7.67	42,768	1,354.05	1,354.05
MH-129	1,358.44	1,344.25	14.19	288,660	1,344.64	1,344.64
MH-130	1,357.00	1,342.50	14.50	331,428	1,342.92	1,342.92
MH-131	1,362.00	1,354.33	/.6/	22,620	1,354.44	1,354.44
MH-132	1,362.98	1,353.51	9.48	22,620	1,353.61	1,353.61
MH-133	1,366.72	1,359.06	7.67	55,080	1,359.19	1,359.19
MH-134	1,363.24	1,355.4/	/.//	55,080	1,355.63	1,355.63
MIL 120	1,365.00	1,357.33	/.6/	42,120	1,357.47	1,357.47
1910-130 MU 127	1,300.00	1,356.14	9.86	42,120	1,356.28	1,356.28
MH-137	1,365.30	1,357.03	7.67	34,992	1,357.74	1,357.74
MIL 120	1,363.00	1,355.23	/.//	34,992	1,355.30	1,355.30
MU 140	1,303.00	1,354.12	8.88 7.7	34,992	1,354.22	1,354.22
	1,308.5/	1,360.91	/.0/	34,992	1,301.03	1,301.03
ML 142	1,30/.3/	1,359.60	1.//	34,992	1,359./3	1,359./3
	1,300.78	1,353.11	/.0/	41,/28	1,353.25	1,353.25
ML 144	1,302.99	1,351.05	11.34	102,430	1,351.93	1,351.93
	1,360.00	1,350.06	9.94	204,164	1,350.38	1,350.38
МШ 145	1,301.00	1,340.04	10.03	204,104	1,348.35	1,340.35
ML 147	1,359.00	1,340.29	13.32	243,092	1,340.04	1,340.04
MH-147	1,358.00	1,344.93	13.07	245,892	1,345.28	1,345.28

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Active Scenario: Peak Flow

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
ML 140	1 268 00	1 260 22	(11)	26.964	1 260 44	1 260 44
MH-140	1,300.00	1,300.33	7.07	36 864	1,300.77	1,300.44
MH-150	1,365.86	1,357.21	10.32	120,004	1,557.57	1,357.34
MH-151	1,303.00	1,353.34	0.32	49 152	1,555.77	1,353.77
MH-152	1 371 53	1,357.02	7.67	36 864	1,354.57	1 363 98
MH-153	1 360 34	1,303.07	7.07	36 864	1,303.30	1,303.30
MH-154	1 368 02	1 359 82	8 20	83 844	1,301.70	1,301.70
MH-155	1,362,00	1 353 29	8 71	84 144	1 353 49	1 353 49
MH-156	1 370 00	1 362 23	7 77	46 980	1 362 36	1 362 36
MH-157	1,365,93	1,358,16	7.77	83 844	1,358,36	1,358,36
MH-158	1.371.00	1,363,33	7.67	31.752	1,363,45	1,363,45
MH-159	1.371.17	1,362,56	8.61	31.752	1.362.68	1,362,68
MH-160	1.372.28	1.364.51	7.77	46,980	1.364.64	1.364.64
MH-161	1.372.19	1.363.52	8.67	46,980	1.363.66	1.363.66
MH-162	1,372.96	1,365.20	7.77	46,980	1,365.34	1,365.34
MH-163	1,377.25	1,369.58	7.67	46,980	1,369.70	1,369,70
MH-164	1,370.00	1,355.34	14.66	470,700	1,355.84	1,355.84
MH-165	1,371.00	1,356.62	14.38	470,700	1,357.12	1,357.12
MH-166	1,371.74	1,358.54	13.20	268,710	1,358.91	1,358.91
MH-167	1,372.00	1,360.29	11.71	268,710	1,360.66	1,360.66
MH-168	1,373.35	1,362.04	11.32	268,710	1,362.41	1,362.41
MH-169	1,368.51	1,360.10	8.41	31,752	1,360.22	1,360.22
MH-170	1,368.09	1,359.43	8.66	31,752	1,359.55	1,359.55
MH-171	1,368.00	1,358.47	9.53	31,752	1,358.59	1,358.59
MH-172	1,367.07	1,354.84	12.22	86,832	1,355.04	1,355.04
MH-173	1,363.26	1,354.12	9.14	86,832	1,354.32	1,354.32
MH-174	1,364.00	1,352.98	11.02	86,832	1,353.18	1,353.18
MH-175	1,367.43	1,359.76	7.67	55,080	1,359.90	1,359.90
MH-176	1,364.00	1,356.23	7.77	55,080	1,356.39	1,356.39
MH-177	1,371.08	1,363.41	7.67	31,752	1,363.52	1,363.52
MH-178	1,369.37	1,361.60	7.77	31,752	1,361.72	1,361.72
MH-179	1,369.26	1,361.59	7.67	26,910	1,361.69	1,361.69
MH-180	1,368.00	1,360.23	7.77	26,910	1,360.34	1,360.34
MH-181	1,367.00	1,359.33	7.67	26,910	1,359.43	1,359.43
MH-182	1,365.18	1,357.41	7.77	26,910	1,357.52	1,357.52
MH-183	1,371.31	1,363.64	7.67	49,248	1,363.79	1,363.79
MH-184	1,370.71	1,362.85	7.87	49,248	1,362.99	1,362.99
MH-185	1,3/5.00	1,361.69	13.31	201,990	1,362.00	1,362.00
MH-186	1,3/4.5/	1,363.64	10.93	268,/10	1,364.01	1,364.01
MH-187	1,3/6.53	1,363.32	13.22	133,950	1,363.57	1,363.57
MH-188	1,378.00	1,364.//	13.23	133,950	1,365.02	1,365.02
MIL 100	1,3/9.82	1,367.59	12.23	65,910	1,36/.//	1,36/.//
MH-190	1,3/5.69	1,368.02	/.6/	68,040	1,368.19	1,368.19
MU 102	1,3/5.00	1,300.91	8.09 	68,040	1,307.09	1,307.09
ML 102	1,3/4.00	1,300.23	1.//	68,040	1,300.41	1,300.41
MH 104	1,380.01	1,3/2.34	/.0/	68,040 22.0FF	1,3/2.49	1,3/2.49
MH_105	1,380.00	1,3/2.33	/.0/	32,935	1,3/2.40	1,3/2.40
MH-196	1 378 11	1,300.00	7 67	32 922	1 370 56	1 370 56
1.111-120	1,370.11	1,370.44	7.07	32,333	1,370.50	1,370.30

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Active Scenario: Peak Flow

Label	Elevation (Rim)	Elevation (Invert)	Depth (Structure)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
	(ft)	(ft)	(ft)		(ft)	(ft)
MH-197	1,380.00	1,369.62	10.38	32,955	1,369.75	1,369.75
MH-198	1,370.00	1,362.23	7.77	46,980	1,362.37	1,362.37
MH-199	1,375.31	1,367.64	7.67	31,104	1,367.75	1,367.75
MH-200	1,372.96	1,365.20	7.77	31,104	1,365.32	1,365.32
MH-201	1,377.55	1,363.96	13.59	31,104	1,364.07	1,364.07
MH-202	1,360.63	1,349.69	10.95	169,836	1,349.97	1,349.97
MH-203	1,359.80	1,351.44	8.36	108,708	1,351.66	1,351.66
MH-204	1,361.78	1,352.76	9.01	108,708	1,352.99	1,352.99
MH-205	1,364.00	1,354.05	9.95	47,580	1,354.19	1,354.19
MH-206	1,363.00	1,355.33	7.67	47,580	1,355.48	1,355.48
MH-207	1,364.86	1,356.59	8.27	108,708	1,356.82	1,356.82
MH-208	1,365.98	1,358.21	7.77	47,580	1,358.36	1,358.36
MH-209	1,368.00	1,360.33	7.67	47,580	1,360.46	1,360.46
MH-210	1,370.82	1,360.49	10.33	40,560	1,360.63	1,360.63
MH-211	1,371.00	1,362.21	8.79	40,560	1,362.34	1,362.34
MH-212	1,371.00	1,363.33	7.67	40,560	1,363.47	1,363.47
MH-213	1,372.00	1,364.33	7.67	40,560	1,364.47	1,364.47
MH-214	1,374.00	1,363.08	10.93	213,390	1,363.40	1,363.40
MH-215	1,373.78	1,364.30	9.48	126,450	1,364.54	1,364.54
MH-216	1,376.07	1,365.90	10.17	126,450	1,366.14	1,366.14
MH-217	1,378.92	1,371.25	7.67	43,470	1,371.38	1,371.38
MH-218	1,376.90	1,369.13	7.77	43,470	1,369.25	1,369.25
MH-219	1,374.60	1,366.83	7.77	86,940	1,367.03	1,367.03
MH-220	1,375.00	1,365.60	9.40	86,940	1,365.79	1,365.79
MH-221	1,379.69	1,372.02	7.67	63,225	1,372.19	1,372.19
MH-222	1,378.50	1,370.73	7.77	63,225	1,370.90	1,370.90
MH-223	1,377.19	1,369.42	7.77	126,450	1,369.66	1,369.66
MH-224	1,376.07	1,368.30	7.77	126,450	1,368.54	1,368.54
MH-225	1,375.03	1,367.26	7.77	126,450	1,367.50	1,367.50
MH-226	1,386.00	1,378.33	7.67	35,100	1,378.44	1,378.44
MH-227	1,383.00	1,375.23	7.77	35,100	1,375.36	1,375.36
MH-228	1,381.68	1,373.91	7.77	70,200	1,374.06	1,374.06
MH-229	1,376.13	1,365.39	10.74	268,710	1,365.76	1,365.76
MH-230	1,379.00	1,367.14	11.86	268,710	1,367.51	1,367.51
MH-231	1,381.09	1,368.89	12.20	201,533	1,369.21	1,369.21
MH-232	1,382.72	1,370.64	12.08	201,533	1,370.96	1,370.96
MH-233	1,385.00	1,372.39	12.61	134,355	1,372.64	1,372.64
MH-234	1,384.20	1,374.14	10.06	134,355	1,374.39	1,374.39
MH-235	1,383.66	1,375.89	7.77	67,177	1,376.07	1,376.07
MH-236	1,386.45	1,378.78	7.67	67,177	1,378.93	1,378.93
MH-237	1,375.00	1,358.82	16.18	776,550	1,359.29	1,359.29
MH-238	1,375.60	1,359.34	16.26	776,550	1,359.81	1,359.81
MH-239	1,378.60	1,361.62	16.98	776,550	1,362.07	1,362.07
MH-240	1,395.24	1,381.83	13.41	53,430	1,381.96	1,381.96
MH-241	1,395.81	1,382.67	13.14	53,430	1,382.83	1,382.83
MH-242	1,398.16	1,388.81	9.36	26,715	1,388.92	1,388.92
MH-243	1,397.41	1,389.74	7.67	26,715	1,389.85	1,389.85
MH-244	1,392.48	1,384.81	7.67	26,715	1,384.92	1,384.92
MH-245	1,392.71	1,383.86	8.85	26,715	1,383.97	1,383.97

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Active Scenario: Peak Flow

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Depth (Structure) (ft)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
MH-247	1 380 78	1 362 38	18 40	776 550	1 362 99	1 362 99
MH-248	1 383 69	1 363 14	20.55	773 250	1 363 72	1 363 72
MH-249	1 386 68	1 363 81	20.55	723,250	1 364 39	1 364 39
MH-250	1 388 41	1 364 57	22.07	, 25,250	1 364 57	1,364 57
MH-251	1 390 74	1 365 33	25.01	0	1 365 33	1 365 33
MH-252	1 387 28	1 365 76	23.11	723 250	1 366 26	1,365,25
MH-252	1 386 06	1 366 81	19.25	651 490	1 367 39	1,300.20
MH-254	1,389.87	1,370.54	19.33	344 820	1,370,98	1,370,98
MH-255	1 390 58	1 372 29	18.29	344 820	1 372 73	1 372 73
MH-256	1,393,49	1,374.04	19.45	263,700	1.374.41	1,374 41
MH-257	1 393 87	1 375 79	18.08	182 580	1 376 09	1 376 09
MH-258	1,394,90	1,377,54	17.35	182,580	1,377,84	1,377,84
MH-259	1,396.06	1,379,29	16.77	93,315	1.379.50	1,379,50
MH-260	1,398,65	1.381.04	17.61	93,315	1.381.25	1.381.25
MH-261	1,400.60	1.382.79	17.81	67.620	1.382.97	1,382.97
MH-262	1.391.81	1,384.14	7.67	67.620	1.384.32	1.384.32
MH-263	1.396.95	1,389,18	7.77	49,140	1.389.33	1,389,33
MH-264	1.399.34	1.391.67	7.67	49,140	1.391.81	1.391.81
MH-265	1.394.75	1.386.98	7.77	51.870	1.387.13	1,387,13
MH-266	1.397.07	1.389.40	7.67	51.870	1.389.54	1.389.54
MH-267	1.393.03	1.385.36	7.67	51.870	1.385.50	1.385.50
MH-268	1.388.00	1.380.23	7.77	71,760	1.380.41	1.380.41
MH-269	1.392.36	1.384.37	8.00	35.880	1.384.47	1.384.47
MH-270	1.393.11	1.385.45	7.67	35,880	1.385.57	1.385.57
MH-271	1.391.14	1.382.61	8.53	29,250	1.382.73	1.382.73
MH-272	1,392.02	1,384.35	7.67	29,250	1,384.47	1,384.47
MH-273	1,389.08	1,381.42	7.67	29,250	1,381.53	1,381.53
MH-274	1,393.18	1,382.86	10.33	40,125	1,382.99	1,382,99
MH-275	1,392.29	1,384.62	7.67	25,695	1,384.73	1,384.73
MH-276	1,394.81	1,385.47	9.34	25,695	1,385.58	1,385.58
MH-277	1,394.19	1,386.52	7.67	25,695	1,386.63	1,386.63
MH-278	1,385.45	1,368.89	16.56	306,670	1,369.30	1,369.30
MH-279	1,386.77	1,370.64	16.12	253,370	1,371.00	1,371.00
MH-280	1,388.32	1,372.39	15.93	224,120	1,372.72	1,372.72
MH-281	1,389.51	1,374.14	15.37	141,570	1,374.40	1,374.40
MH-282	1,390.44	1,375.89	14.55	141,570	1,376.15	1,376.15
MH-283	1,392.54	1,377.64	14.90	68,445	1,377.82	1,377.82
MH-284	1,388.62	1,379.39	9.23	68,445	1,379.57	1,379.57
MH-285	1,388.11	1,380.44	7.67	29,250	1,380.55	1,380.55
MH-286	1,390.23	1,381.26	8.97	29,250	1,381.38	1,381.38
MH-287	1,390.68	1,383.01	7.67	29,250	1,383.13	1,383.13
MH-288	1,390.00	1,382.24	7.77	31,785	1,382.36	1,382.36
MH-289	1,391.87	1,384.20	7.67	27,105	1,384.31	1,384.31
MH-290	1,392.20	1,384.44	7.77	27,105	1,384.53	1,384.53
MH-291	1,394.03	1,386.36	7.67	27,105	1,386.46	1,386.46
MH-292	1,383.24	1,375.09	8.16	53,300	1,375.24	1,375.24
MH-293	1,384.50	1,376.84	7.67	53,300	1,376.99	1,376.99
MH-294	1,386.89	1,378.76	8.13	53,300	1,378.91	1,378.91
MH-295	1,388.17	1,380.51	7.67	53,300	1,380.66	1,380.66

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019 Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC. M. Jessop Page 6 of 7

Active Scenario: Peak Flow

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Depth (Structure) (ft)	Flow (Total Out) (gal/day)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
MH-296	1,391.82	1,381.66	10.17	41,340	1,381.79	1,381.79
MH-297	1,391.07	1,383.41	7.67	41,340	1,383.54	1,383.54
MH-298	1,389.15	1,380.32	8.82	41,340	1,380.46	1,380.46
MH-299	1,389.74	1,382.07	7.67	41,340	1,382.21	1,382.21
MH-300	1,381.47	1,373.70	7.77	53,300	1,373.86	1,373.86
MH-301	1,383.19	1,375.53	7.67	53,300	1,375.68	1,375.68
MH-302	1,370.79	1,363.12	7.67	24,576	1,363.23	1,363.23
MH-303	1,373.90	1,361.70	12.19	24,576	1,361.79	1,361.79
MH-304	1,367.23	1,359.46	7.77	24,576	1,359.55	1,359.55
MH-305	1,364.62	1,356.85	7.77	24,576	1,356.95	1,356.95
MH-306	1,364.00	1,355.91	8.09	24,576	1,356.02	1,356.02
MH-307	1,365.00	1,357.33	7.67	24,576	1,357.44	1,357.44
MH-308	1,373.82	1,366.15	7.67	46,980	1,366.28	1,366.28
MH-309	1,399.68	1,391.91	7.77	52,260	1,392.04	1,392.04
MH-310	1,402.57	1,394.90	7.67	52,260	1,395.03	1,395.03
MH-311	1,376.00	1,364.19	11.81	0	1,364.19	1,364.19

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
60.1	0.0	205.4	0.012	0.0000		1 272 22	7.00	MULO	1 271 26	7.07	46,000	1 20	(%)	251.022	(%)	140.626
CO-1	8.0	295.4	0.013	0.0033	MH-1	1,372.33	7.00	MH-2	1,3/1.36	7.97	46,008	1.28	13.1	351,922	21.6	448,636
CO-2	8.0	3/2.1 202 F	0.013	0.0033	MH-Z	1,3/1.20	8.07	MH-35	1,370.03	7.37	46,008	1.28	13.1	351,922	21.6	448,636
CO-3	8.0	203.5	0.013	0.0081		1,367.30	7.10		1,365.66	/.00	46,008	1.70	8.3	551,079	17.3	/02,525
CO-4	0.0	207.9	0.013	0.0033	МП-4 МЦ Е	1,303.30	11 27	мц с	1,304.07	11.27	40,000	1.20	13.1	JJ1,922	21.0	440,030
CO-5	0.0	455.5 210.2	0.013	0.0047	МП-5 МЦ 6	1,304.37	11.37		1,302.40	11.52	90,490 170,406	1.00	23.0	410,101	29.1	333,002
CO-6	8.0	310.3	0.013	0.0033		1,302.30	11.42		1,301.34	11.00	1/9,490	1.88	51.0	351,922	44.0	448,030
CO-7	8.0	194.0	0.013	0.0033	МП-7 МЦ 0	1,300.01	8.33 9.07		1,359.37	7.97	214,400	1.97	00.9 75.4	351,922	48.7	448,030
CO-0	0.0	127.9 211 7	0.013	0.0055	МП-0	1,359.27	0.07	МП-9 МП 10	1,330.03	7.50	205,170	2.07	75.4	351,922	55.5 47 0	440,030 E90,009
CO-9	0.0	246.2	0.013	0.0057	MIL 10	1,350.75	7.00		1,350.97	0.04	205,170	2.54	57.4	402,104	47.0	569,096
CO-10	10.0	240.2	0.013	0.0024		1,350.71	8./4 7.10	ML 12	1,350.11	9.97	380,004 AFE 704	2.02	/1.1	544,154	53.4	693,696
CO 12	10.0	442.0	0.013	0.0024		1,353.07	7.10		1,354.00	7.50	455,704 AEE 704	2.10	0.00	544,154	59.1	693,696
00-12	10.0	449.9	0.013	0.0024	MID-12	1,353.90	7.40		1,352.82	0.40	455,/84	2.10	83.8	544,154	59.1	093,090
CO-13	10.0	346.0	0.013	0.0106	MH-13	1,352.72	8.58	MH-28280)	1,349.04	12.58	455,784	3.67	39.8	1,146,179	38.3	1,461,169
CO-14	8.0	453.3	0.013	0.0033	MH-14	1,370.33	7.00	MH-15	1,368.84	10.50	52,488	1.33	14.9	351,922	23.1	448,636
CO-15	8.0	496.8	0.013	0.0033	MH-15	1,368.74	10.60	MH-5	1,367.10	8.84	52,488	1.33	14.9	351,922	23.1	448,636
CO-16	8.0	491.5	0.013	0.0033	MH-16	1,361.46	7.00	MH-17	1,359.84	5.68	34,560	1.18	9.8	351,697	18.8	448,349
CO-17	8.0	401.5	0.013	0.0033	MH-17	1,359.74	5.78	MH-18	1,358.41	5.62	34,560	1.18	9.8	352,596	18.8	449,495
CO-18	8.0	500.0	0.013	0.0033	MH-18	1,358.31	5.72	MH-19	1,356.66	5.96	69,120	1.44	19.6	351,936	26.5	448,654
CO-19	8.0	301.7	0.013	0.0044	MH-19	1,356.56	6.06	MH-11	1,355.24	7.09	69,120	1.59	17.1	405,215	24.7	516,576
CO-20	8.0	419.5	0.013	0.0267	MH-20	1,378.55	7.00	MH-21	1,367.33	7.00	25,344	2.24	2.5	1,001,627	9.8	1,276,891
CO-21	8.0	374.8	0.013	0.0055	MH-21	1,367.23	7.10	MH-34	1,365.16	7.00	25,344	1.29	5.6	455,133	14.2	580,211
CO-22	8.0	383.4	0.013	0.0040	MH-22	1,363.23	7.10	MH-23	1,361.68	7.00	50,688	1.42	13.0	389,866	21.6	497,008
CO-23	8.0	526.6	0.013	0.0042	MH-23	1,361.58	7.10	MH-8	1,359.37	7.97	50,688	1.44	12.8	397,150	21.4	506,294
CO-24	8.0	281.6	0.013	0.0112	MH-24	1,365.33	7.00	MH-25	1,362.19	7.00	34,992	1.81	5.4	647,209	14.1	825,073
CO-25	8.0	400.1	0.013	0.0050	MH-25	1,362.09	7.10	MH-7	1,360.11	8.23	34,992	1.37	8.1	431,331	17.1	549,868
CO-26	8.0	317.7	0.013	0.0046	MH-26	1,369.18	7.00	MH-27	1,367.71	7.00	34,992	1.33	8.4	417,573	17.4	532,329
CO-27	8.0	398.9	0.013	0.0033	MH-27	1,367.61	7.10	MH-6	1,366.29	7.49	34,992	1.18	9.9	351,922	18.9	448,636
CO-28	8.0	268.5	0.013	0.0033	MH-28	1,365.33	7.00	MH-29	1,364.45	7.89	46,008	1.28	13.1	351,922	21.6	448,636
CO-29	8.0	498.0	0.013	0.0115	MH-29	1,364.35	7.99	MH-10	1,358.61	7.00	46,008	1.99	7.0	657,445	15.9	838,122
CO-30	8.0	413.9	0.013	0.0058	MH-30	1,366.36	7.00	MH-31	1,363.95	7.00	46,008	1.57	9.8	467,692	18.8	596,221
CO-31	8.0	419.8	0.013	0.0033	MH-31	1,363.85	7.10	MH-6	1,362.46	11.32	46,008	1.28	13.1	351,922	21.6	448,636
CO-32	8.0	493.3	0.013	0.0142	MH-32	1,365.33	7.00	MH-33	1,358.33	7.00	75,480	2.47	10.3	729,739	19.3	930,284
CO-33	8.0	382.2	0.013	0.0033	MH-33	1,358.23	7.10	MH-10	1,356.97	8.64	75,480	1.48	21.4	351,922	27.7	448,636
CO-34	8.0	415.4	0.013	0.0042	MH-34	1,365.06	7.10	MH-22	1,363.33	7.00	50,688	1.43	12.8	395,480	21.4	504,164
CO-35	8.0	262.9	0.013	0.0096	MH-35	1,369.93	7.47	MH-3	1,367.40	7.00	46,008	1.87	7.7	600,743	16.6	765,838
CO-36	8.0	342.0	0.013	0.0033	MH-36	1,361.24	11.10	MH-7	1,360.11	8.23	179,496	1.88	51.0	351,922	44.0	448,636
CO-37	10.0	350.3	0.013	0.0024	MH-37	1,356.01	10.07	MH-11	1,355.17	7.00	386,664	2.03	70.8	546,505	53.2	696,694
CO-38	8.0	363.4	0.013	0.0033	MH-38	1,360.83	7.00	MH-39	1,359.63	7.00	38,640	1.22	11.0	351,922	19.8	448,636

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
		262.4				1 0 5 0 5 0			1 050 00			1.00	(%)	054 000	(%)	
CO-39	8.0	369.4	0.013	0.0033	MH-39	1,359.53	/.10	MH-40	1,358.32	9.14	38,640	1.22	11.0	351,922	19.8	448,636
CO-40	8.0	225.3	0.013	0.0033	MH-40	1,358.22	9.24	MH-41	1,357.47	11.56	38,640	1.22	11.0	351,922	19.8	448,636
CO-41	8.0	261.2	0.013	0.0045	MH-41	1,357.37	11.66	OF-4 (EX- MH-28282)	1,356.19	12.79	119,010	1.88	28.9	412,038	32.3	525,273
CO-42	8.0	378.4	0.013	0.0033	MH-42	1,367.33	7.00	MH-43	1,366.08	7.28	80,370	1.51	22.8	351,922	28.6	448,636
CO-43	8.0	498.7	0.013	0.0039	MH-43	1,365.98	7.38	MH-44	1,364.03	7.00	80,370	1.60	21.0	383,307	27.5	488,646
CO-44	8.0	498.3	0.013	0.0038	MH-44	1,363.93	7.10	MH-41	1,362.03	7.00	80,370	1.59	21.3	378,005	27.6	481,887
CO-45	8.0	500.0	0.013	0.0033	MH-45	1,343.99	8.62	OF-1 (EX- MH-28278)	1,342.34	10.10	265,128	2.07	75.3	351,922	55.3	448,636
CO-46	8.0	500.0	0.013	0.0033	MH-46	1,345.74	8.73	MH-45	1,344.09	8.52	125,184	1.70	35.6	351,922	36.2	448,636
CO-47	8.0	500.0	0.013	0.0033	MH-47	1,347.49	7.10	MH-46	1,345.84	8.63	125,184	1.70	27.9	448,636	36.2	448,636
CO-48	8.0	364.8	0.013	0.0033	MH-48	1,348.79	7.10	MH-47	1,347.59	7.00	93,888	1.57	20.9	448,671	31.1	448,671
CO-49	8.0	282.5	0.013	0.0037	MH-49	1,349.93	7.10	MH-48	1,348.89	7.00	93,888	1.63	19.9	472,923	30.2	472,923
CO-50	8.0	277.1	0.013	0.0037	MH-50	1,351.04	7.10	MH-49	1,350.03	7.00	62,592	1.45	13.2	472,419	24.6	472,419
CO-51	8.0	355.2	0.013	0.0033	MH-51	1,352.32	7.10	MH-50	1,351.14	7.00	62,592	1.40	13.9	449,342	25.2	449,342
CO-52	8.0	500.0	0.013	0.0035	MH-52	1,354.17	7.10	MH-51	1,352.42	7.00	31,296	1.17	6.8	462,031	17.6	462,031
CO-53	8.0	500.0	0.013	0.0033	MH-53	1,355.92	7.10	MH-52	1,354.27	7.00	31,296	1.14	7.0	448,636	17.9	448,636
CO-54	8.0	320.6	0.013	0.0033	MH-54	1,362.24	9.09	MH-55	1,361.18	7.26	134,178	1.74	38.1	351,922	37.5	448,636
CO-55	8.0	334.2	0.013	0.0056	MH-55	1,361.08	7.36	MH-56	1,359.21	8.16	134,178	2.10	29.3	458,118	32.6	584,017
CO-56	8.0	384.5	0.013	0.0033	MH-56	1,359.11	8.26	MH-57	1,357.84	10.20	268,440	2.08	76.3	351,922	55.7	448,636
CO-57	8.0	412.3	0.013	0.0033	MH-57	1,357.74	10.30	MH-58	1,356.38	8.95	268,440	2.08	76.3	351,922	55.7	448,636
CO-58	10.0	500.0	0.013	0.0024	MH-58	1,352.80	12.37	MH-59	1,351.60	12.09	359,286	1.99	66.0	544,154	51.0	693,696
CO-59	10.0	225.4	0.013	0.0055	MH-59	1,351.50	12.19	MH-60	1,350.25	10.31	393,630	2.77	47.6	826,781	42.3	1,053,994
CO-60	10.0	490.5	0.013	0.0024	MH-60	1,350.15	10.41	MH-61	1,348.97	8.20	471,390	2.12	86.6	544,154	60.5	693,696
CO-61	10.0	217.6	0.013	0.0073	MH-61	1,348.87	8.30	MH-62	1,347.28	7.00	500,550	3.28	52.7	950,665	44.8	1,211,924
CO-62	10.0	298.8	0.013	0.0024	MH-62	1,347.18	7.10	MH-63	1,346.46	9.71	529,710	2.17	97.3	544,132	65.4	693,669
CO-63	12.0	498.4	0.013	0.0019	MH-63	1,346.29	9.71	OF-2 (EX- MH-28279)	1,345.34	12.05	619,740	2.08	78.6	788,568	56.8	1,005,280
CO-64	8.0	364.2	0.013	0.0033	MH-64	1,358.33	7.00	MH-65	1,357.13	9.52	45,015	1.27	12.8	351,922	21.4	448,636
CO-65	8.0	451.0	0.013	0.0057	MH-65	1,357.03	9.62	MH-66	1,354.48	7.00	45,015	1.54	9.8	460,628	18.8	587,217
CO-66	8.0	404.0	0.013	0.0082	MH-66	1,354.38	7.10	MH-67	1,351.08	7.00	90,030	2.14	16.3	553,772	24.1	705,958
CO-67	8.0	303.9	0.013	0.0054	MH-67	1,350.98	7.10	MH-63	1,349.33	7.00	90,030	1.86	20.0	451,024	26.8	574,973
CO-68	8.0	347.7	0.013	0.0081	MH-68	1,362.00	7.00	MH-69	1,359.20	7.00	47,430	1.77	8.6	550,429	17.6	701,696
CO-69	8.0	282.2	0.013	0.0033	MH-69	1,359.10	7.10	MH-70	1,358.17	7.17	47,430	1.29	13.5	351,922	22.0	448,636
CO-70	8.0	354.4	0.013	0.0033	MH-70	1,358.07	7.27	MH-58	1,356.90	8.44	47,430	1.29	13.5	351,922	22.0	448,636
CO-71	8.0	401.5	0.013	0.0050	MH-71	1,364.33	7.00	MH-72	1,362.33	7.00	47,430	1.49	11.0	432,351	19.8	551,169
CO-72	8.0	247.2	0.013	0.0036	MH-72	1,362.23	7.10	MH-73	1,361.33	7.00	47,430	1.34	12.8	369,671	21.4	471,263
CO-73	8.0	315.3	0.013	0.0064	MH-73	1,361.23	7.10	MH-56	1,359.21	8.16	47,430	1.64	9.7	490,329	18.6	625,079
CO-74	8.0	318.6	0.013	0.0063	MH-74	1,366.33	7.00	MH-75	1,364.33	7.00	33,810	1.47	7.0	485,389	15.9	618,783

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
													(%)		(%)	
CO-75	8.0	220.1	0.013	0.0035	MH-75	1,364.23	7.10	MH-76	1,363.47	7.00	33,810	1.19	9.3	361,761	18.3	461,179
CO-76	8.0	310.6	0.013	0.0033	MH-76	1,363.37	7.10	MH-54	1,362.34	8.99	33,810	1.17	9.6	351,922	18.5	448,636
CO-77	8.0	198.9	0.013	0.0033	MH-77	1,352.48	7.00	MH-78	1,351.82	7.01	29,160	1.12	8.3	351,862	17.3	448,560
CO-78	8.0	499.0	0.013	0.0035	MH-78	1,351.82	7.01	MH-79	1,350.08	7.01	29,160	1.14	8.0	362,489	17.0	462,107
CO-79	8.0	500.6	0.013	0.0033	MH-79	1,349.98	7.11	MH-80	1,348.33	7.17	29,160	1.12	8.3	351,912	17.3	448,624
CO-80	8.0	267.0	0.013	0.0033	MH-80	1,348.23	7.27	MH-62	1,347.34	7.10	29,160	1.12	8.3	351,917	17.3	448,629
CO-81	8.0	381.6	0.013	0.0047	MH-81	1,352.14	7.00	MH-82	1,350.33	7.00	29,160	1.27	6.9	421,566	15.8	537,420
CO-82	8.0	279.0	0.013	0.0039	MH-82	1,350.23	7.10	MH-61	1,349.14	8.20	29,160	1.19	7.6	383,932	16.6	489,443
CO-83	8.0	456.6	0.013	0.0033	MH-83	1,357.93	7.00	MH-84	1,356.43	7.91	43,416	1.26	12.3	351,922	21.0	448,636
CO-84	8.0	279.0	0.013	0.0033	MH-84	1,356.33	8.01	MH-85	1,355.41	7.98	43,416	1.26	12.3	351,922	21.0	448,636
CO-85	8.0	320.6	0.013	0.0033	MH-85	1,355.31	8.08	MH-86	1,354.25	8.74	43,416	1.26	12.3	351,922	21.0	448,636
CO-86	8.0	405.5	0.013	0.0033	MH-86	1,354.15	8.84	MH-87	1,352.81	7.41	77,760	1.49	22.1	351,922	28.1	448,636
CO-87	8.0	325.6	0.013	0.0033	MH-87	1,352.71	7.51	MH-88	1,351.63	8.70	77,760	1.49	22.1	351,922	28.1	448,636
CO-88	8.0	339.3	0.013	0.0033	MH-88	1,351.53	8.80	MH-60	1,350.41	10.31	77,760	1.49	22.1	351,922	28.1	448,636
CO-89	8.0	262.9	0.013	0.0037	MH-89	1,356.30	7.00	MH-90	1,355.33	7.00	34,344	1.22	9.2	371,522	18.2	473,623
CO-90	8.0	405.9	0.013	0.0033	MH-90	1,355.23	7.10	MH-59	1,353.89	9.96	34,344	1.18	9.8	351,922	18.7	448,636
CO-91	8.0	428.3	0.013	0.0033	MH-91	1,355.96	7.00	MH-92	1,354.55	9.51	43,416	1.26	12.3	351,922	21.0	448,636
CO-92	8.0	419.4	0.013	0.0033	MH-92	1,354.45	9.61	MH-58	1,353.06	12.27	43,416	1.26	12.3	351,922	21.0	448,636
CO-93	8.0	411.3	0.013	0.0033	MH-93	1,364.53	7.00	MH-94	1,363.17	7.23	43,416	1.26	12.3	351,922	21.0	448,636
CO-94	8.0	425.8	0.013	0.0033	MH-94	1,360.62	9.78	MH-56	1,359.21	8.16	86,832	1.54	24.7	351,922	29.8	448,636
CO-95	8.0	331.9	0.013	0.0060	MH-95	1,366.33	7.00	MH-96	1,364.36	7.00	50,184	1.62	10.6	472,805	19.5	602,740
CO-96	8.0	437.6	0.013	0.0044	MH-96	1,364.26	7.10	MH-54	1,362.34	8.99	100,368	1.77	24.8	405,338	29.9	516,732
CO-97	8.0	424.0	0.013	0.0071	MH-97	1,365.33	7.00	MH-98	1,362.33	7.00	43,416	1.65	8.4	515,283	17.4	656,892
CO-98	8.0	459.0	0.013	0.0033	MH-98	1,362.23	7.10	MH-94	1,360.72	9.68	43,416	1.26	12.3	351,922	21.0	448,636
CO-99	8.0	326.1	0.013	0.0062	MH-99	1,368.52	7.00	MH-100	1,366.50	7.00	50,184	1.64	10.4	481,836	19.4	614,253
CO-100	8.0	432.0	0.013	0.0047	MH-100	1,366.40	7.10	MH-96	1,364.36	7.00	50,184	1.49	11.9	421,132	20.7	536,867
CO-101	21.0	600.0	0.013	0.0032	MH_101	1 373 80	<u>8</u> 11	OF-9 (EX-	1 321 08	7 56	2 477 034	3 58	54.6	4 538 003	45 7	5 785 126
CO-101	21.0	000.0	0.015	0.0052	101-101	1,525.09	0.11	MH-25)	1,521.90	7.50	2,77,057	5.50	54.0	ч,550,005	ч.,	5,765,120
CO-102	21.0	600.0	0.013	0.0029	MH-102	1,325.73	6.99	MH-101	1,323.99	8.01	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-103	21.0	600.0	0.013	0.0029	MH-103	1,327.57	9.55	MH-102	1,325.83	6.89	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-104	21.0	600.0	0.013	0.0029	MH-104	1,329.41	11.31	MH-103	1,327.67	9.45	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-105	21.0	600.0	0.013	0.0029	MH-105	1,331.25	9.69	MH-104	1,329.51	11.21	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-106	21.0	238.6	0.013	0.0029	MH-106	1,332.05	8.67	MH-105	1,331.35	9.59	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-107	21.0	600.0	0.013	0.0029	MH-107	1,333.89	9.51	MH-106	1,332.15	8.57	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-108	21.0	600.0	0.013	0.0029	MH-108	1,335.73	11.84	MH-107	1,333.99	9.41	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-109	21.0	600.0	0.013	0.0029	MH-109	1,337.57	10.69	MH-108	1,335.83	11.74	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-110	21.0	600.0	0.013	0.0029	MH-110	1,339.41	13.94	MH-109	1,337.67	10.59	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-111	21.0	113.9	0.013	0.0029	MH-111	1,339.84	14.56	MH-110	1,339.51	13.84	2,477,034	3.45	57.3	4,325,799	47.0	5,514,604
CO-112	18.0	678.5	0.013	0.0096	MH-112	1,346.43	11.11	MH-111	1,339.94	14.71	2,145,606	5.19	41.2	5,208,462	39.1	6,639,839

19-1003_183 FlexTable: Cor	33 SewerC/ Induit Table	AD (SUB 06).st	SW												Active	Scenario: Peak Flo
Label	Diam (in)	Length (ft)	Mannin g's n	Slope (ft/ft)	Start Node	Invert (Start) (ft)	Cover (Start) (ft)	Stop Node	Invert (Stop) (ft)	Cover (Stop) (ft)	Flow (gal/day)	Velocity (ft/s)	Flow / Capacity (Design) (%)	Capacity (Design) (gal/day)	Depth (Normal) / Diam (%)	Capacity (Full Flow) (gal/day)
CO-113	18.0	177.1	0.013	0.0033	MH-113	1,347.11	10.88	MH-112	1,346.53	11.01	1,827,918	3.35	60.1	3,041,545	48.3	3,877,414
CO-114	18.0	491.4	0.013	0.0029	MH-114	1,349.77	11.34	MH-113	1,348.34	9.64	1,658,082	3.12	57.8	2,867,752	47.2	3,655,860
CO-115	18.0	293.0	0.013	0.0029	MH-115	1,350.72	11.87	MH-114	1,349.87	11.24	1,571,250	3.08	54.8	2,867,752	45.8	3,655,860
CO-116	18.0	511.1	0.013	0.0029	MH-116	1,352.30	12.32	MH-115	1,350.82	11.77	1,544,340	3.07	53.9	2,867,752	45.4	3,655,860
CO-117	18.0	501.9	0.013	0.0029	MH-117	1,353.85	12.97	MH-116	1,352.40	12.22	1,408,722	2.99	49.1	2,867,752	43.1	3,655,860
CO-118	18.0	292.2	0.013	0.0041	MH-118	1,355.16	13.08	MH-117	1,353.95	12.87	938,022	3.05	27.4	3,427,386	31.5	4,369,292
CO-119	18.0	591.1	0.013	0.0029	MH-119	1,356.98	13.52	MH-118	1,355.26	12.98	848,214	2.61	29.6	2,867,752	32.8	3,655,860
CO-120	8.0	260.6	0.013	0.0033	MH-120	1,361.41	7.10	MH-121	1,360.55	9.13	46,980	1.29	13.3	351,922	21.8	448,636
CO-121	8.0	476.3	0.013	0.0046	MH-121	1,360.45	9.23	MH-122	1,358.26	7.85	78,732	1.68	19.0	414,778	26.1	528,767
CO-122	8.0	500.0	0.013	0.0037	MH-122	1,358.16	7.95	MH-123	1,356.33	7.00	113,724	1.72	30.7	370,628	33.4	472,483
CO-123	8.0	323.5	0.013	0.0038	MH-123	1,356.23	7.10	MH-124	1,355.00	7.00	113,724	1.75	30.0	378,680	33.0	482,747
CO-124	8.0	449.4	0.013	0.0033	MH-124	1,352.85	9.15	MH-125	1,351.36	12.00	197,868	1.93	56.2	351,922	46.5	448,636
CO-125	8.0	500.0	0.013	0.0033	MH-125	1,351.26	12.10	MH-126	1,349.61	11.64	239,988	2.02	68.2	351,922	52.0	448,636
CO-126	8.0	500.0	0.013	0.0033	MH-126	1,349.51	11.74	MH-127	1,347.86	11.47	295,068	2.12	83.8	351,922	59.2	448,636
CO-127	10.0	167.2	0.013	0.0024	MH-127	1,347.60	11.57	MH-112	1,347.19	11.01	317,688	1.93	58.4	544,154	47.5	693,696
CO-128	8.0	480.6	0.013	0.0066	MH-128	1,353.94	7.00	MH-129	1,350.77	7.00	42,768	1.60	8.6	496,992	17.6	633,574
CO-129	8.0	499.2	0.013	0.0033	MH-129	1,344.25	13.52	MH-130	1,342.60	13.73	288,660	2.11	82.0	351,922	58.4	448,636
CO-130	8.0	497.8	0.013	0.0035	MH-130	1,342.50	13.83	MH-111	1,340.77	14.71	331,428	2.22	91.7	361,485	62.8	460,828
CO-131	8.0	220.6	0.013	0.0033	MH-131	1,354.33	7.00	MH-132	1,353.61	8.71	22,620	1.04	6.4	351,922	15.3	448,636
CO-132	8.0	412.0	0.013	0.0033	MH-132	1,353.51	8.81	MH-127	1,352.15	7.19	22,620	1.04	6.4	351,922	15.3	448,636
CO-133	8.0	283.6	0.013	0.0123	MH-133	1,359.06	7.00	MH-134	1,355.57	7.00	55,080	2.15	8.1	679,027	17.1	865,635
CO-134	8.0	474.7	0.013	0.0033	MH-134	1,355.47	7.10	MH-126	1,353.91	7.35	55,080	1.35	15.7	351,922	23.6	448,636
CO-135	8.0	329.9	0.013	0.0033	MH-135	1,357.33	7.00	MH-136	1,356.24	9.09	42,120	1.25	12.0	351,922	20.7	448,636
CO-136	8.0	387.5	0.013	0.0033	MH-136	1,356.14	9.19	MH-125	1,354.87	8.49	42,120	1.25	12.0	351,922	20.7	448,636
CO-137	8.0	387.3	0.013	0.0059	MH-137	1,357.63	7.00	MH-138	1,355.33	7.00	34,992	1.45	7.4	471,832	16.4	601,499
CO-138	8.0	308.1	0.013	0.0033	MH-138	1,355.23	7.10	MH-139	1,354.22	8.12	34,992	1.18	9.9	351,922	18.9	448,636
CO-139	8.0	113.1	0.013	0.0064	MH-139	1,354.12	8.22	MH-155	1,353.39	7.94	34,992	1.49	7.1	490,065	16.1	624,744
CO-140	8.0	337.7	0.013	0.0036	MH-140	1,360.91	7.00	MH-141	1,359.70	7.00	34,992	1.22	9.6	365,687	18.5	466,184
CO-141	8.0	406.2	0.013	0.0033	MH-141	1,359.60	7.10	MH-122	1,358.26	7.85	34,992	1.18	9.9	351,922	18.9	448,636
CO-142	8.0	412.5	0.013	0.0033	MH-142	1,353.11	7.00	MH-143	1,351.75	10.57	41,728	1.24	11.9	351,922	20.6	448,636
CO-143	8.0	450.5	0.013	0.0033	MH-143	1,351.65	10.67	MH-144	1,350.16	9.17	162,436	1.83	46.2	351,922	41.6	448,636
CO-144	8.0	583.4	0.013	0.0033	MH-144	1,350.06	9.27	MH-145	1,348.14	12.86	204,164	1.94	58.0	351,922	47.3	448,636
CO-145	8.0	499.7	0.013	0.0033	MH-145	1,348.04	12.96	MH-146	1,346.39	12.55	204,164	1.94	58.0	351,922	47.3	448,636
CO-146	8.0	381.3	0.013	0.0033	MH-146	1,346.29	12.65	MH-147	1,345.03	12.30	245,892	2.03	69.9	351,922	52.8	448,636
CO-147	8.0	175.3	0.013	0.0033	MH-147	1,344.93	12.40	MH-129	1,344.35	13.42	245,892	2.03	69.9	351,922	52.8	448,636
CO-148	8.0	452.6	0.013	0.0067	MH-148	1,360.33	7.00	MH-149	1,357.31	7.00	36,864	1.54	7.4	500,929	16.3	638,593
CO-149	8.0	475.5	0.013	0.0033	MH-149	1,357.21	7.10	MH-150	1,355.64	9.56	36,864	1.20	10.5	351,922	19.4	448,636
CO-150	8.0	237.9	0.013	0.0033	MH-150	1,355.54	9.66	MH-143	1,354.75	7.57	120,708	1.69	34.3	351,922	35.5	448,636
CO-151	8.0	433.4	0.013	0.0033	MH-151	1,354.82	8.68	MH-155	1,353.39	7.94	49,152	1.31	14.0	351,922	22.3	448,636

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(ft)	(ft)		(ft)	(ft)			(Design)	(gal/day)	Diam	(gal/day)
00.450		155.0				1 0 60 07			1 9 6 1 6 7			1.07	(%)	105 1 10	(%)	E 44 0 E 6
CO-152	8.0	455.2	0.013	0.0048	MH-152	1,363.87	7.00	MH-153	1,361.67	7.00	36,864	1.3/	8.7	425,140	1/./	541,976
CO-153	8.0	500.0	0.013	0.0033	MH-153	1,361.57	/.10	MH-154	1,359.92	/.43	36,864	1.20	10.5	351,922	19.4	448,636
CO-154	8.0	105.3	0.013	0.0033	MH-155	1,353.29	8.04	MH-124	1,352.95	9.05	84,144	1.52	23.9	351,922	29.4	448,636
CO-155	8.0	409.7	0.013	0.0038	MH-154	1,359.82	7.53	MH-157	1,358.26	7.00	83,844	1.60	22.2	378,429	28.2	482,428
CO-156	8.0	2/3.5	0.013	0.0084	MH-156	1,362.23	7.10	MH-154	1,359.92	7.43	46,980	1.80	8.3	563,000	17.3	/1/,/22
CO-15/	8.0	419.9	0.013	0.0033	MH-157	1,358.16	7.10	MH-150	1,356.//	8.42	83,844	1.52	23.8	351,922	29.3	448,636
CO-158	8.0	203.3	0.013	0.0033	MH-158	1,363.33	7.00	MH-159	1,362.66	7.84	31,/52	1.15	9.0	351,922	18.0	448,636
CO-159	8.0	482.8	0.013	0.0042	MH-159	1,362.56	7.94	MH-121	1,360.55	9.13	31,/52	1.25	8.0	395,824	17.0	504,604
CO-160	8.0	438.2	0.013	0.0050	MH-160	1,364.51	7.10	MH-198	1,362.33	7.00	46,980	1.49	10.9	432,056	19.7	550,792
CO-161	8.0	357.4	0.013	0.0033	MH-161	1,363.52	8.00	MH-156	1,362.33	7.00	46,980	1.29	13.3	352,839	21.8	449,805
CO-162	8.0	4/8.5	0.013	0.0033	MH-162	1,365.20	7.10	MH-161	1,363.62	7.90	46,980	1.29	13.3	351,922	21.8	448,636
CO-163	8.0	333.3	0.013	0.0128	MH-163	1,369.58	/.00	MH-162	1,365.30	/.00	46,980	2.08	6.8	694,260	15./	885,055
CO-164	10.0	299.4	0.013	0.0024	MH-164	1,355.34	13.83	MH-117	1,354.62	12.87	4/0,/00	2.11	86.5	544,154	60.4	693,696
CO-165	10.0	492.6	0.013	0.0024	MH-165	1,356.62	13.55	MH-164	1,355.44	13./3	4/0,/00	2.11	86.5	544,154	60.4	693,696
CO-166	8.0	500.0	0.013	0.0033	MH-166	1,358.54	12.53	MH-165	1,356.89	13.45	268,710	2.08	76.4	351,922	55.8	448,636
CO-16/	8.0	500.0	0.013	0.0033	MH-167	1,360.29	11.05	MH-166	1,358.64	12.43	268,/10	2.08	76.4	351,922	55.8	448,636
CO-168	8.0	500.0	0.013	0.0033	MH-168	1,362.04	10.65	MH-167	1,360.39	10.95	268,/10	2.08	/6.4	351,922	55.8	448,636
CO-169	8.0	1/4.1	0.013	0.0033	MH-169	1,360.10	7.74	MH-170	1,359.53	7.90	31,/52	1.15	9.0	351,922	18.0	448,636
CO-170	8.0	261.7	0.013	0.0033	MH-170	1,359.43	8.00	MH-171	1,358.57	8.//	31,/52	1.15	9.0	351,922	18.0	448,636
CO-171	8.0	457.3	0.013	0.0033	MH-1/1	1,358.47	8.8/	MH-172	1,356.96	9.44	31,/52	1.15	9.0	351,922	18.0	448,636
CO-172	8.0	187.6	0.013	0.0033	MH-172	1,354.84	11.56	MH-173	1,354.22	8.3/	86,832	1.54	24.7	351,922	29.8	448,636
CO-173	8.0	316.6	0.013	0.0033	MH-173	1,354.12	8.47	MH-174	1,353.08	10.25	86,832	1.54	24.7	351,922	29.8	448,636
CO-1/4	8.0	213.2	0.013	0.0033	MH-1/4	1,352.98	10.35	MH-114	1,352.27	9.67	86,832	1.54	24.7	351,922	29.8	448,636
CO-175	8.0	325.2	0.013	0.0105	MH-175	1,359.76	7.00	MH-176	1,356.33	/.00	55,080	2.04	8.8	629,142	17.7	802,042
CO-1/6	8.0	391.1	0.013	0.0033	MH-176	1,356.23	7.10	MH-172	1,354.94	11.46	55,080	1.35	15.7	351,922	23.6	448,636
CO-1//	8.0	328.4	0.013	0.0052	MH-1//	1,363.41	7.00	MH-178	1,361.70	7.00	31,/52	1.35	7.2	442,374	16.1	563,946
CO-178	8.0	423.6	0.013	0.0033	MH-178	1,361.60	7.10	MH-169	1,360.20	7.64	31,/52	1.15	9.0	351,922	18.0	448,636
CO-1/9	8.0	307.8	0.013	0.0041	MH-1/9	1,361.59	7.00	MH-180	1,360.33	7.00	26,910	1.18	6.9	391,241	15.8	498,761
CO-180	8.0	497.4	0.013	0.0036	MH-180	1,360.23	7.10	MH-116	1,358.45	7.00	26,910	1.13	7.3	366,948	16.3	467,792
CO-181	8.0	281.4	0.013	0.0065	MH-181	1,359.33	7.00	MH-182	1,357.51	7.00	26,910	1.39	5.5	493,241	14.1	628,792
CO-182	8.0	359.7	0.013	0.0033	MH-182	1,357.41	7.10	MH-115	1,356.22	7.19	26,910	1.09	7.6	351,922	16.6	448,636
CO-183	8.0	210./	0.013	0.0033	MH-183	1,363.64	/.00	MH-184	1,362.95	/.10	49,248	1.31	14.0	351,922	22.4	448,636
CO-184	8.0	497.3	0.013	0.0033	MH-184	1,362.85	7.20	MH-118	1,361.20	/.88	49,248	1.31	14.0	351,922	22.4	448,636
CO-185	8.0	348.3	0.013	0.0033	MH-165	1,360.54	9.79	MH-185	1,361.69	12.64	201,990	1.94	57.4	351,922	47.0	448,636
CO-186	8.0	456.1	0.013	0.0033	MH-186	1,363.64	10.26	MH-168	1,362.14	10.55	268,710	2.08	76.4	351,922	55.8	448,636
CO-187	8.0	462.7	0.013	0.0033	MH-185	1,361.79	12.54	MH-187	1,363.32	12.55	133,950	1.74	38.1	351,922	37.4	448,636
CO-188	8.0	409.0	0.013	0.0033	MH-187	1,363.42	12.45	MH-188	1,364.77	12.57	133,950	1.74	38.1	351,922	37.4	448,636
CO-189	8.0	408.6	0.013	0.0033	MH-188	1,366.24	11.09	MH-189	1,367.59	11.56	65,910	1.42	18.7	351,922	25.9	448,636
CO-190	8.0	305.1	0.013	0.0033	MH-190	1,368.02	7.00	MH-191	1,367.01	7.32	68,040	1.43	19.3	351,922	26.3	448,636

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC.

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Conduit Table

Label	Diam	Length	Mannin	Slope	Start	Invert	Cover	Stop Node	Invert	Cover	Flow	Velocity	Flow /	Capacity	Depth	Capacity
	(in)	(ft)	g's n	(ft/ft)	Node	(Start)	(Start)		(Stop)	(Stop)	(gal/day)	(ft/s)	Capacity	(Design)	(Normal) /	(Full Flow)
						(11)	(11)		(11)	(11)			(Design) (%)	(gai/uay)	(%)	(gai/uay)
CO-191	8.0	424.1	0.013	0.0033	MH-191	1.366.91	7.42	MH-185	1.365.51	8.82	68.040	1.43	19.3	351.922	26.3	448.636
CO-192	8.0	414.4	0.013	0.0033	MH-188	1,364.87	12.47	MH-192	1,366.23	7.10	68,040	1.43	19.3	351,922	26.3	448,636
CO-193	8.0	347.6	0.013	0.0173	MH-192	1,366.33	7.00	MH-193	1,372.34	7.00	68,040	2.58	8.4	805,244	17.4	1,026,540
CO-194	8.0	434.3	0.013	0.0033	MH-194	1,372.33	7.00	MH-195	1,370.90	8.43	32,955	1.16	9.4	351,922	18.4	448,636
CO-195	8.0	361.1	0.013	0.0033	MH-195	1,368.88	10.45	MH-189	1,367.69	11.46	65,910	1.42	18.7	351,922	25.9	448,636
CO-196	8.0	217.7	0.013	0.0033	MH-196	1,370.44	7.00	MH-197	1,369.72	9.61	32,955	1.16	9.4	351,922	18.4	448,636
CO-197	8.0	193.5	0.013	0.0033	MH-197	1,369.62	9.71	MH-195	1,368.98	10.35	32,955	1.16	9.4	351,922	18.4	448,636
CO-198	8.0	164.1	0.013	0.0044	MH-198	1,362.23	7.10	MH-120	1,361.51	7.00	46,980	1.43	11.5	407,607	20.3	519,625
CO-199	8.0	480.0	0.013	0.0049	MH-199	1,367.64	7.00	MH-200	1,365.30	7.00	31,104	1.31	7.3	427,928	16.2	545,530
CO-200	8.0	346.1	0.013	0.0033	MH-200	1,365.20	7.10	MH-201	1,364.06	12.83	31,104	1.14	8.8	351,922	17.8	448,636
CO-201	8.0	307.0	0.013	0.0033	MH-201	1,363.96	12.93	MH-119	1,362.94	8.39	31,104	1.14	8.8	351,922	17.8	448,636
CO-202	8.0	500.0	0.013	0.0033	MH-202	1,349.69	10.28	MH-113	1,348.04	10.78	169,836	1.85	48.3	351,922	42.6	448,636
CO-203	8.0	500.0	0.013	0.0033	MH-203	1,351.44	7.69	MH-202	1,349.79	10.18	108,708	1.64	30.9	351,922	33.5	448,636
CO-204	8.0	370.9	0.013	0.0033	MH-204	1,352.76	8.35	MH-203	1,351.54	7.59	108,708	1.64	30.9	351,922	33.5	448,636
CO-205	8.0	358.4	0.013	0.0033	MH-205	1,354.05	9.29	MH-204	1,352.86	8.25	47,580	1.29	13.5	351,922	22.0	448,636
CO-206	8.0	359.9	0.013	0.0033	MH-206	1,355.33	7.00	MH-205	1,354.15	9.19	47,580	1.29	13.5	351,922	22.0	448,636
CO-207	8.0	440.5	0.013	0.0033	MH-207	1,356.59	7.60	MH-116	1,355.14	10.31	108,708	1.64	30.9	351,922	33.5	448,636
CO-208	8.0	459.7	0.013	0.0033	MH-208	1,358.21	7.10	MH-207	1,356.69	7.50	47,580	1.29	13.5	351,922	22.0	448,636
CO-209	8.0	320.0	0.013	0.0063	MH-209	1,360.33	7.00	MH-208	1,358.31	7.00	47,580	1.62	9.8	486,840	18.8	620,632
CO-210	8.0	403.7	0.013	0.0033	MH-210	1,360.49	9.66	MH-118	1,359.16	9.92	40,560	1.23	11.5	351,922	20.3	448,636
CO-211	8.0	488.4	0.013	0.0033	MH-211	1,362.21	8.13	MH-210	1,360.59	9.56	40,560	1.23	11.5	351,922	20.3	448,636
CO-212	8.0	311.5	0.013	0.0033	MH-212	1,363.33	7.00	MH-211	1,362.31	8.03	40,560	1.23	11.5	351,922	20.3	448,636
CO-213	8.0	488.1	0.013	0.0033	MH-213	1,364.33	7.00	MH-119	1,362.72	8.61	40,560	1.23	11.5	351,922	20.3	448,636
CO-214	8.0	268.2	0.013	0.0033	MH-214	1,363.08	10.26	OF-5 (EX MH-28284)	1,362.19	12.78	213,390	1.96	47.6	448,583	48.5	448,583
CO-215	8.0	340.8	0.013	0.0033	MH-215	1,364.30	8.81	MH-214	1,363.18	10.16	126,450	1.71	28.2	448,681	36.4	448,681
CO-216	8.0	453.5	0.013	0.0033	MH-216	1,365.90	9.51	MH-215	1,364.40	8.71	126,450	1.71	28.2	448,548	36.4	448,548
CO-217	8.0	446.0	0.013	0.0045	MH-217	1,371.25	7.00	MH-218	1,369.23	7.00	43,470	1.41	10.5	412,547	19.5	525,922
CO-218	8.0	375.5	0.013	0.0059	MH-218	1,369.13	7.10	MH-219	1,366.93	7.00	43,470	1.54	9.3	468,685	18.3	597,488
CO-219	8.0	344.9	0.013	0.0033	MH-219	1,366.83	7.10	MH-220	1,365.70	8.64	86,940	1.54	24.7	351,922	29.8	448,636
CO-220	8.0	279.5	0.013	0.0033	MH-220	1,365.60	8.74	MH-214	1,364.67	8.66	86,940	1.54	24.7	351,922	29.8	448,636
CO-221	8.0	360.2	0.013	0.0033	MH-221	1,372.02	7.00	MH-222	1,370.83	7.01	63,225	1.41	14.1	449,638	25.3	449,638
CO-222	8.0	365.3	0.013	0.0033	MH-222	1,370.73	7.11	MH-223	1,369.52	7.00	63,225	1.40	14.1	448,737	25.4	448,737
CO-223	8.0	310.3	0.013	0.0033	MH-223	1,369.42	7.10	MH-224	1,368.40	7.01	126,450	1.71	28.2	448,616	36.4	448,616
CO-224	8.0	284.7	0.013	0.0033	MH-224	1,368.30	7.11	MH-225	1,367.36	7.01	126,450	1.71	28.2	448,535	36.4	448,535
CO-225	8.0	382.0	0.013	0.0033	MH-225	1,367.26	7.10	MH-216	1,366.00	9.41	126,450	1.71	28.1	449,394	36.3	449,394
CO-226	8.0	406.2	0.013	0.0074	MH-226	1,378.33	7.00	MH-227	1,375.33	7.00	35,100	1.57	6.7	526,451	15.5	671,128
CO-227	8.0	345.6	0.013	0.0035	MH-227	1,375.23	7.10	MH-228	1,374.01	7.00	35,100	1.22	9.6	364,615	18.6	464,817

Label	Diam (in)	Length	Mannin	Slope	Start	Invert (Start)	Cover	Stop Node	Invert (Stop)	Cover (Stop)	Flow (gal/day)	Velocity	Flow /	Capacity (Design)	Depth	Capacity
	(11)	(11)	ysn	(1411)	NOUE	(Start) (ft)	(Start) (ft)		(3t0p) (ft)	(3t0p) (ft)	(yai/uay)	(145)	(Design)	(dal/dav)	Diam	(al/dav)
						(,	(,		()	()			(%)	(90., 00,)	(%)	(90., 00))
CO-228	8.0	485.9	0.013	0.0096	MH-228	1,373.91	7.10	OF-6 (EX MH 28286)	1,369.26	13.46	70,200	2.11	11.7	599,232	20.5	763,912
CO-229	8.0	500.0	0.013	0.0033	MH-186	1,363.74	10.16	MH-229	1,365.39	10.07	268,710	2.08	76.4	351,922	55.8	448,636
CO-230	8.0	500.0	0.013	0.0033	MH-229	1,365.49	9.97	MH-230	1,367.14	11.19	268,710	2.08	76.4	351,922	55.8	448,636
CO-231	8.0	500.0	0.013	0.0033	MH-230	1,367.24	11.09	MH-231	1,368.89	11.53	201,533	1.94	57.3	351,922	47.0	448,636
CO-232	8.0	500.0	0.013	0.0033	MH-231	1,368.99	11.43	MH-232	1,370.64	11.42	201,533	1.94	57.3	351,922	47.0	448,636
CO-233	8.0	500.0	0.013	0.0033	MH-232	1,370.74	11.32	MH-233	1,372.39	11.94	134,355	1.74	38.2	351,922	37.5	448,636
CO-234	8.0	500.0	0.013	0.0033	MH-233	1,372.49	11.84	MH-234	1,374.14	9.39	134,355	1.74	38.2	351,922	37.5	448,636
CO-235	8.0	500.0	0.013	0.0033	MH-234	1,374.24	9.29	MH-235	1,375.89	7.10	67,177	1.43	19.1	351,922	26.1	448,636
CO-236	8.0	379.9	0.013	0.0073	MH-235	1,375.99	7.00	MH-236	1,378.78	7.00	67,177	1.90	12.8	525,062	21.4	669,359
CO-237	18.0	600.0	0.013	0.0029	MH-237	1,358.82	14.68	MH-119	1,357.08	13.42	776,550	2.54	27.1	2,867,752	31.3	3,655,860
CO-238	18.0	145.7	0.013	0.0029	MH-238	1,359.34	14.76	MH-237	1,358.92	14.58	776,550	2.54	27.1	2,867,752	31.3	3,655,860
CO-239	18.0	623.0	0.013	0.0035	MH-239	1,361.62	15.48	MH-238	1,359.44	14.66	776,550	2.72	24.7	3,150,117	29.8	4,015,825
CO-240	8.0	98.2	0.013	0.0292	MH-240	1,381.83	12.74	OF-7 (EX MH 27581)	1,378.96	15.87	53,430	2.88	5.1	1,046,563	13.7	1,334,176
CO-241	8.0	227.0	0.013	0.0033	MH-241	1,382.67	12.47	MH-240	1,381.93	12.64	53,430	1.34	15.2	351,922	23.3	448,636
CO-242	8.0	325.3	0.013	0.0033	MH-242	1,388.81	8.69	MH-241	1,387.73	7.41	26,715	1.09	7.6	351,922	16.6	448,636
CO-243	8.0	253.6	0.013	0.0033	MH-243	1,389.74	7.00	MH-242	1,388.91	8.59	26,715	1.09	7.6	351,922	16.6	448,636
CO-244	8.0	256.6	0.013	0.0033	MH-244	1,384.81	7.00	MH-245	1,383.96	8.08	26,715	1.09	7.6	351,922	16.6	448,636
CO-245	8.0	330.0	0.013	0.0033	MH-245	1,383.86	8.18	MH-241	1,382.77	12.37	26,715	1.09	7.6	351,922	16.6	448,636
CO-247	18.0	600.0	0.013	0.0011	MH-247	1,362.38	16.90	MH-239	1,361.72	15.38	776,550	1.79	34.5	2,251,577	40.5	2,251,577
CO-248	18.0	600.0	0.013	0.0011	MH-248	1,363.14	19.05	MH-247	1,362.48	16.80	723,250	1.76	32.1	2,251,577	39.0	2,251,577
CO-249	18.0	515.4	0.013	0.0011	MH-249	1,363.81	21.37	MH-248	1,363.24	18.95	723,250	1.76	32.1	2,251,587	39.0	2,251,587
CO-250	18.0	600.0	0.013	0.0011	MH-250	1,364.57	22.34	MH-249	1,363.91	21.27	0	0.00	0.0	2,251,577	(N/A)	2,251,577
CO-251	18.0	600.0	0.013	0.0011	MH-251	1,365.33	23.91	MH-250	1,364.67	22.24	0	0.00	0.0	2,251,577	(N/A)	2,251,577
CO-252	12.0	334.0	0.013	0.0041	MH-252	1,365.76	20.52	MH-249	1,364.41	21.27	723,250	2.88	62.8	1,150,800	49.6	1,467,060
CO-253	12.0	497.2	0.013	0.0019	MH-253	1,366.81	18.25	MH-252	1,365.86	20.42	651,490	2.10	82.7	787,304	58.7	1,003,669
CO-254	8.0	483.0	0.013	0.0033	MH-254	1,370.54	18.66	MH-253	1,368.95	16.44	344,820	2.19	98.0	351,922	65.7	448,636
CO-255	8.0	500.0	0.013	0.0033	MH-255	1,372.29	17.62	MH-254	1,370.64	18.56	344,820	2.19	98.0	351,922	65.7	448,636
CO-256	8.0	500.0	0.013	0.0033	MH-255	1,372.39	17.52	MH-256	1,374.04	18.78	263,700	2.07	74.9	351,922	55.1	448,636
CO-257	8.0	500.0	0.013	0.0033	MH-256	1,374.14	18.68	MH-257	1,375.79	17.41	182,580	1.89	51.9	351,922	44.4	448,636
CO-258	8.0	500.0	0.013	0.0033	MH-257	1,375.89	17.31	MH-258	1,377.54	16.69	182,580	1.89	51.9	351,922	44.4	448,636
CO-259	8.0	500.0	0.013	0.0033	MH-258	1,377.64	16.59	MH-259	1,379.29	16.10	93,315	1.57	26.5	351,922	31.0	448,636
CO-260	8.0	500.0	0.013	0.0033	MH-259	1,379.39	16.00	MH-260	1,381.04	16.94	93,315	1.57	26.5	351,922	31.0	448,636
CO-261	8.0	500.0	0.013	0.0033	MH-260	1,381.14	16.84	MH-261	1,382.79	17.15	67,620	1.43	19.2	351,922	26.2	448,636
CO-262	8.0	378.5	0.013	0.0033	MH-261	1,382.89	17.05	MH-262	1,384.14	7.00	67,620	1.43	19.2	351,922	26.2	448,636
CO-263	8.0	500.0	0.013	0.0039	MH-263	1,389.18	7.10	MH-258	1,387.23	7.00	49,140	1.39	12.8	383,015	21.4	488,274
CO-264	8.0	500.0	0.013	0.0048	MH-264	1,391.67	7.00	MH-263	1,389.28	7.00	49,140	1.49	11.6	423,225	20.4	539,535
CO-265	8.0	500.0	0.013	0.0033	MH-265	1,386.98	7.10	MH-256	1,385.33	7.49	51,870	1.32	14.7	351,922	23.0	448,636

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Conduit Table
19-1003_183 FlexTable: Cor	33 SewerC/ Induit Table	AD (SUB 06).st	SW												Active	Scenario: Peak Flo
Label	Diam (in)	Length (ft)	Mannin g's n	Slope (ft/ft)	Start Node	Invert (Start) (ft)	Cover (Start) (ft)	Stop Node	Invert (Stop) (ft)	Cover (Stop) (ft)	Flow (gal/day)	Velocity (ft/s)	Flow / Capacity (Design) (%)	Capacity (Design) (gal/day)	Depth (Normal) / Diam (%)	Capacity (Full Flow) (gal/day)
CO-266	8.0	500.0	0.013	0.0046	MH-266	1,389.40	7.00	MH-265	1,387.08	7.00	51,870	1.50	12.4	417,350	21.1	532,045
CO-267	8.0	497.9	0.013	0.0049	MH-267	1,385.36	7.00	MH-255	1,382.91	7.00	51,870	1.53	12.1	429,681	20.8	547,765
CO-268	8.0	500.0	0.013	0.0033	MH-268	1,380.23	7.10	MH-252	1,378.58	8.03	71,760	1.46	20.4	351,922	27.1	448,636
CO-269	8.0	500.0	0.013	0.0081	MH-269	1,384.37	7.33	MH-268	1,380.33	7.00	35,880	1.63	6.5	550,566	15.4	701,871
CO-270	8.0	296.6	0.013	0.0033	MH-270	1,385.45	7.00	MH-269	1,384.47	7.23	35,880	1.19	10.2	351,922	19.1	448,636
CO-271	8.0	358.2	0.013	0.0033	MH-271	1,382.61	7.87	MH-256	1,381.43	11.39	29,250	1.12	8.3	351,922	17.3	448,636
CO-272	8.0	497.6	0.013	0.0033	MH-272	1,384.35	7.00	MH-271	1,382.71	7.77	29,250	1.12	8.3	351,922	17.3	448,636
CO-273	8.0	350.0	0.013	0.0033	MH-273	1,381.42	7.00	MH-255	1,380.26	9.65	29,250	1.12	8.3	351,922	17.3	448,636
CO-274	8.0	349.2	0.013	0.0033	MH-274	1,382.86	9.66	MH-258	1,381.70	12.53	40,125	1.23	11.4	351,922	20.2	448,636
CO-275	8.0	504.6	0.013	0.0033	MH-275	1,384.62	7.00	MH-274	1,382.96	9.56	25,695	1.08	7.3	351,922	16.2	448,636
CO-276	8.0	374.2	0.013	0.0033	MH-276	1,385.47	8.67	MH-260	1,384.23	13.75	25,695	1.08	7.3	351,922	16.2	448,636
CO-277	8.0	289.6	0.013	0.0033	MH-277	1,386.52	7.00	MH-276	1,385.57	8.57	25,695	1.08	7.3	351,922	16.2	448,636
CO-278	8.0	499.9	0.013	0.0033	MH-278	1,368.89	15.89	MH-253	1,367.24	18.15	306,670	2.14	87.1	351,922	60.7	448,636
CO-279	8.0	500.0	0.013	0.0033	MH-279	1,370.64	15.46	MH-278	1,368.99	15.79	253,370	2.05	72.0	351,922	53.8	448,636
CO-280	8.0	500.0	0.013	0.0033	MH-280	1,372.39	15.26	MH-279	1,370.74	15.36	224,120	1.99	63.7	351,922	50.0	448,636
CO-281	8.0	500.0	0.013	0.0033	MH-281	1,374.14	14.70	MH-280	1,372.49	15.16	141,570	1.76	40.2	351,922	38.6	448,636
CO-282	8.0	500.0	0.013	0.0033	MH-282	1,375.89	13.89	MH-281	1,374.24	14.60	141,570	1.76	40.2	351,922	38.6	448,636
CO-283	8.0	500.0	0.013	0.0033	MH-283	1,377.64	14.24	MH-282	1,375.99	13.79	68,445	1.44	19.4	351,922	26.4	448,636
CO-284	8.0	500.0	0.013	0.0033	MH-284	1,379.39	8.56	MH-283	1,377.74	14.14	68,445	1.44	19.4	351,922	26.4	448,636
CO-285	8.0	352.9	0.013	0.0038	MH-285	1,380.44	7.00	MH-279	1,379.10	7.00	29,250	1.18	7.7	377,764	16.7	481,581
CO-286	8.0	365.4	0.013	0.0033	MH-286	1,381.26	8.30	MH-280	1,380.05	7.60	29,250	1.12	8.3	351,922	17.3	448,636
CO-287	8.0	500.0	0.013	0.0033	MH-287	1,383.01	7.00	MH-286	1,381.36	8.20	29,250	1.12	8.3	351,922	17.3	448,636
CO-288	8.0	366.2	0.013	0.0033	MH-288	1,382.24	7.10	MH-282	1,381.03	8.75	31,785	1.15	9.0	351,922	18.0	448,636
CO-289	8.0	500.1	0.013	0.0037	MH-289	1,384.20	7.00	MH-288	1,382.34	7.00	27,105	1.14	7.2	373,880	16.2	476,629
CO-290	8.0	369.3	0.013	0.0094	MH-290	1,384.44	7.10	MH-284	1,380.96	7.00	27,105	1.59	4.6	594,914	12.9	758,407
CO-291	8.0	291.6	0.013	0.0063	MH-291	1,386.36	7.00	MH-290	1,384.54	7.00	27,105	1.38	5.6	484,584	14.2	617,756
CO-292	8.0	454.4	0.013	0.0033	MH-292	1,375.09	7.49	MH-278	1,373.59	11.19	53,300	1.34	15.1	351,922	23.3	448,636
CO-293	8.0	500.0	0.013	0.0033	MH-293	1,376.84	7.00	MH-292	1,375.19	7.39	53,300	1.34	15.1	351,922	23.3	448,636
CO-294	8.0	309.3	0.013	0.0033	MH-294	1,378.76	7.47	MH-280	1,377.73	9.92	53,300	1.34	15.1	351,922	23.3	448,636
CO-295	8.0	500.0	0.013	0.0033	MH-295	1,380.51	7.00	MH-294	1,378.86	7.37	53,300	1.34	15.1	351,922	23.3	448,636
CO-296	8.0	287.8	0.013	0.0033	MH-296	1,381.66	9.50	MH-282	1,380.71	9.07	41,340	1.24	11.7	351,922	20.5	448,636
CO-297	8.0	500.0	0.013	0.0033	MH-297	1,383.41	7.00	MH-296	1,381.76	9.40	41,340	1.24	11.7	351,922	20.5	448,636
CO-298	8.0	252.1	0.013	0.0033	MH-298	1,380.32	8.16	MH-284	1,379.49	8.46	41,340	1.24	11.7	351,922	20.5	448,636
CO-299	8.0	500.0	0.013	0.0033	MH-299	1,382.07	7.00	MH-298	1,380.42	8.06	41,340	1.24	11.7	351,922	20.5	448,636
CO-300	8.0	436.8	0.013	0.0033	MH-300	1,373.70	7.10	MH-247	1,372.26	7.85	53,300	1.34	15.1	351,922	23.3	448,636
CO-301	8.0	500.0	0.013	0.0034	MH-301	1,375.53	7.00	MH-300	1,373.80	7.00	53,300	1.36	14.8	359,765	23.1	458,635
CO-302	8.0	400.0	0.013	0.0033	MH-302	1,363.12	7.00	MH-303	1,361.80	11.43	24,576	1.06	7.0	351,922	15.9	448,636
CO-303	8.0	346.7	0.013	0.0062	MH-303	1,361.70	11.53	MH-304	1,359.56	7.00	24,576	1.33	5.1	481,383	13.7	613,675
CO-304	8.0	400.0	0.013	0.0063	MH-304	1,359.46	7.10	MH-305	1,356.95	7.00	24,576	1.34	5.1	485,695	13.6	619,173

19-1003_1833 SewerCAD (SUB 06).stsw 10/8/2019

Active Scenario: Peak Flow

Label	Diam (in)	Length (ft)	Mannin g's n	Slope (ft/ft)	Start Node	Invert (Start) (ft)	Cover (Start) (ft)	Stop Node	Invert (Stop) (ft)	Cover (Stop) (ft)	Flow (gal/day)	Velocity (ft/s)	Flow / Capacity (Design) (%)	Capacity (Design) (gal/day)	Depth (Normal) / Diam (%)	Capacity (Full Flow) (gal/day)
CO-305	8.0	400.0	0.013	0.0048	MH-305	1,356.85	7.10	MH-151	1,354.92	8.58	24,576	1.21	5.8	425,060	14.5	541,873
CO-306	8.0	300.0	0.013	0.0033	MH-306	1,355.91	7.42	MH-151	1,354.92	8.58	24,576	1.06	7.0	351,922	15.9	448,636
CO-307	8.0	400.0	0.013	0.0033	MH-307	1,357.33	7.00	MH-306	1,356.01	7.32	24,576	1.06	7.0	351,922	15.9	448,636
CO-308	8.0	300.0	0.013	0.0051	MH-308	1,366.15	7.00	MH-160	1,364.61	7.00	46,980	1.51	10.7	438,929	19.6	559,554
CO-309	8.0	500.0	0.013	0.0180	MH-309	1,391.91	7.10	OF-8 (EX MH 28291)	1,382.90	16.03	52,260	2.42	6.4	822,412	15.2	1,048,425
CO-310	8.0	410.0	0.013	0.0070	MH-310	1,394.90	7.00	MH-309	1,392.01	7.00	52,260	1.74	10.2	514,184	19.1	655,491
CO-311	10.0	722.5	0.013	0.0024	MH-311	1,364.19	10.98	OF-5 (EX MH-28284)	1,362.46	12.35	0	0.00	0.0	543,511	(N/A)	692,877

Active Scenario: Peak Flow

19-1003_1833 SewerCAD (SUB 06).stsw FlexTable: Outfall Table

Active Scenario: Peak Flow

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (gal/day)
OF-1 (EX-MH-28278)	1,353.11	1,342.34	1,342.64	265,128
OF-2 (EX-MH-28279)	1,358.39	1,345.34	1,345.75	619,740
OF-3 (EX MH-28280)	1,362.45	1,349.04	1,349.36	455,784
OF-4 (EX-MH-28282)	1,369.65	1,356.19	1,356.39	119,010
OF-5 (EX MH-28284)	1,375.64	1,362.19	1,362.46	213,390
OF-6 (EX MH 28286)	1,383.39	1,369.26	1,369.40	70,200
OF-7 (EX MH 27581)	1,395.50	1,378.96	1,379.05	53,430
OF-8 (EX MH 28291)	1,399.60	1,382.90	1,383.00	52,260
OF-9 (EX-MH-25)	1,331.29	1,321.98	1,322.69	2,477,034

Hawes Crossing (Mesa, AZ) HILGARTWILSON, LLC.