Exhibit 14 - Master Drainage Report

FOR HAWES CROSSING

MESA, ARIZONA

Prepared For: Mr. James Boyle Mesa-Casa Grande Land Co. LLC. 19965 E Elliot Rd. Mesa, AZ 85212

Prepared By: HILGARTWILSON, LLC

2141 E. Highland Avenue, Suite 250 Phoenix, AZ 85016 Phone: (602) 490-0535 Fax: (602) 368-2436

October 2019 HILGARTWILSON Project No. 1833

MASTER DRAINAGE REPORT FOR HAWES CROSSING

TABLE OF CONTENTS

1.0	INTRODUCTION								
	1.1 PROJECT NAME, LOCATION AND TOPOGRAPHY								
	1.2 PURPOSE								
	1.3 SITE LOCATION RELATIVE TO KNOWN FEMA FLOOD HAZARD ZONES	2							
2.0	PREVIOUS REGIONAL STUDIES								
	2.1 FCDMC OUTFALL CHANNEL DESIGN REPORT	2							
	2.2 EAST MESA AREA DRAINAGE MASTER PLAN UPDATE	2							
3.0	MANAGEMENT OF OFFSITE DRAINAGE	2							
	3.1 EXISTING PATTERNS								
	3.2 FINAL BUILD-OUT PROPOSED PATTERNS	3							
	3.3 PROPOSED VILLAGE DEVELOPMENT								
	3.3.1 VILLAGE 1	4							
	3.3.2 VILLAGE 2								
	3.3.3 VILLAGE 3	4							
	3.3.4 VILLAGE 4	4							
	3.3.5 VILLAGE 5	4							
	3.3.6 VILLAGE 6	5							
	3.3.7 VILLAGE 7	5							
	3.3.8 VILLAGE 8	5							
4.0	HYDROLOGIC ANALYSIS								
	4.1 RATIONAL METHOD ANALYSIS								
5.0	HYDRAULIC ANALYSIS								
	5.1 PRELIMINARY OPEN CHANNEL DESIGN	6							
	5.2 PRELIMINARY CULVERT DESIGN	6							
6.0	ONSITE DRAINAGE								
	6.1 LOT DRAINAGE								
	6.2 ONSITE STREET DRAINAGE	7							
	6.3 DRAINAGE STRUCTURES								
	6.4 ONSITE STORMWATER STORAGE REQUIREMENTS	7							
	6.4.1 RETENTION BASIN DEWATERING								
7.0	FINISHED FLOOR ELEVATIONS								
8.0	SUMMARY AND CONCLUSIONS	9							
9.0	REFERENCES	10							

MASTER DRAINAGE REPORT FOR HAWES CROSSING

APPENDICES

Α.	Figures
В.	Previous Drainage Studies
C.	Preliminary Hydrologic Calculations
D.	Preliminary Hydraulic Calculations
E.	Preliminary Retention Calculations

FIGURES

	5			
1.	Vicinity Map		Appendix A	1
2.	Vicinity Map Proposed Land Use Plan Village Exhibit		Appendix A	4
3.	Village Exhibit		Appendix A	1
4.	FEMA Flood Map		Appendix A	4
5.	Master Drainage Exhibit		Appendix A	١
6.	Village 1 Interim Drainage Exhibit		Appendix A	1
7.	Village 2 Interim Drainage Exhibit		Appendix A	4
8.	Village 3 Interim Drainage Exhibit		Appendix A	1
9.	Village 4 Interim Drainage Exhibit		Appendix A	4
10.	Village 5 Interim Drainage Exhibit		Appendix A	1
11.	Village 6 Interim Drainage Exhibit		Appendix A	4
12.	Village 7 Interim Drainage Exhibit		Appendix A	١
13.	Village 8 Interim Drainage Exhibit		Appendix A	1
			25	
		TABLES		
1	Land Use Summary Table		·	2
	Land Coo Carring Table minimum			,

1.0 INTRODUCTION

1.1 PROJECT NAME, LOCATION AND TOPOGRAPHY

Hawes Crossing (the Project) is located in the City of Mesa (the City) within portions of Sections 8, 16, 17, 20, and 21 of Township 1 South, Range 7 East of the Gila and Salt River Base and Meridian. The Project is comprised of a 1,132-acre master planned mixed use development. The Project is generally bound by the Villages of Eastridge and Elliot Road to the north, the Loop 202 San Tan Freeway to the south, Ellsworth Road to the east and Sossaman Road to the west, as illustrated on Figure 1 (Vicinity Map) of Appendix A.

The Project is planned as a mixed-use development, which will include technology, office, and commercial areas, along with medium density, medium/high density, and urban residential areas, and parks and open space. The land use plan for the Project is presented on Figure 2 (Proposed Land Use Plan) of Appendix A. The site currently consists of existing dairies, light industrial and agricultural districts as well as estate residential properties (RU-43). The site generally slopes from east to west at approximately 0.4 percent. Portions of the Project are within the City limits, with the remaining area under the jurisdiction of Maricopa County. It is assumed the areas within Maricopa County will be annexed into the City of Mesa and a General Plan Amendment and PAD Rezone will be processed and approved by the City.

The Project Villages are anticipated to be developed at different times in which the order are not known at this time. The drainage infrastructure will also need to be constructed such that Villages are protected during interim conditions from stormwater impacts. The planned Villages for the Project can be seen on Figure 3 (Village Exhibit) of Appendix A. It should be noted that the Village numbering does not represent the actual sequential phasing of the Project. The development considerations for the various Villages of the Project are further discussed further in Section 3.3.

1.2 PURPOSE

This Master Drainage Report (MDR) has been prepared in support of the General Plan Amendment for Hawes Crossing. The purpose of this MDR is to provide conceptual hydrologic and hydraulic analyses of the Project property, including existing and proposed drainage systems, and address potential drainage related constraints relative to project development. In addition to identifying the drainage constraints, this report is intended to identify overall drainage management concepts and establish design guidelines for future improvement plans for the property. This MDR will become the basis for more detailed hydrologic and hydraulic designs, performed during the preliminary and final plat submittals. Site specific drainage reports will be prepared to address internal drainage at the parcel level, and will be submitted in conjunction with the site plan and subdivision plat stages of development of the property as required by the City.

This MDR has been prepared in accordance with the City's Engineering and Design Standards (EDS) (City of Mesa 2017) and the Flood Control District of Maricopa County's (FCDMC) current versions of the Drainage Policies and Standards (DPSM) (FCDMC 2016), Drainage Design Manuals (DDM) for Maricopa County, Volume 1 - Hydrology (FCDMC 2013a) and Volume 2 - Hydraulics (FCDMC 2013b).

1.3 SITE LOCATION RELATIVE TO KNOWN FEMA FLOOD HAZARD ZONES

The property is located within the Federal Emergency Management Agency's (FEMA) Zone X (Shaded) as shown on the FEMA Flood Insurance Rate Map (FIRM) panel number 04013C2760L, revised October 16th, 2013 which is presented on Figure 4 (FEMA Flood Map) of Appendix A. The Zones associated with this Project are defined below.

Zone X (Shaded):

The flood insurance rate zone that corresponds to areas between the 100-year and 500-year floodplains, areas of 100-year sheet flow flooding where average depths are less than 1 foot, areas of 100-year stream flooding where the contributing drainage area is less than 1 square mile, or areas protected from the 100-year flood by levees. No base flood elevations or depths are shown within this zone.

2.0 PREVIOUS REGIONAL STUDIES

2.1 FCDMC OUTFALL CHANNEL DESIGN REPORT

In July 2004, the FCDMC prepared the *Outfall Channel Design Report* (FCDMC 2004) detailing the design of the large earthen channel traversing the Project, east of the freeway, routing offsite flows to the Loop 202 channel. The report details the channel's configuration and specifies a design flow of 1,100 cfs referenced from the East Mesa Area Drainage Master Plan. Excerpts of the report are included in Appendix B.

2.2 EAST MESA AREA DRAINAGE MASTER PLAN UPDATE

In March 2014, the FCDMC completed the *East Mesa Area Drainage Master Plan Update* (ADMPU, FCDMC 2014) which provided an updated hydrologic analysis of the East Mesa Area Drainage Master Plan adjacent to the Project. The analysis detailed the methodology and results of revised HEC-1 models referencing updated parameters including NOAA 14 rainfall precipitation depths. The ADMPU did not detail flows impacting the property as flows are either diverted away or the study area is not inclusive of the Project. As such, the ADMPU was not referenced in this report.

3.0 MANAGEMENT OF OFFSITE DRAINAGE

3.1 EXISTING PATTERNS

As previously mentioned, tributary drainage areas to the Project generally slope west and southwest, approaching as sheet flow and shallow concentrated flows originating from undeveloped desert rangeland and sparsely developed agricultural operations from the east, west of the Loop 202. Flows from the development north of the Project are intercepted by a series of regional retention basins. In addition to the offsite flows from the east, the Elliot Road Channel currently conveys offsite flows traversing the proposed site and outfalls into the Loop 202 Channel. The Elliot Road Channel crosses the eastern portion of the Project, discharging beneath Ellsworth Road. The channel has been designed to convey the 100-year flow of 1,100 cfs identified in the Elliot Road Channel Design Report. Flows from the adjacent Elliot Road and Ellsworth Road

frontage is captured by an existing system of catch basins that routes the flows to either the Elliot Road or Loop 202 Channels. The Loop 202 drainage channel cuts off additional upstream drainage areas where runoff is now conveyed south along the highway and away from the Project. Peak flows and contributing drainage areas are graphically displayed on Figure 5 (Master Drainage Exhibit) of Appendix A.

3.2 FINAL BUILD-OUT PROPOSED PATTERNS

Offsite flows approaching the Project will continue to be received as they do under existing conditions. Engineered channels will route the collected flows to historical outfall points within or along the downstream limits of the property. Flows will be discharged from the Project at their historical outfalls in a similar manner mimicking existing drainage conditions such that downstream properties are not impacted. The final drainage infrastructure layout can be seen on Figure 5. As the existing alignment of the Elliot Road Channel traverses the site, two alternative channel alignments are being considered to convey the 1,100 cfs runoff safely through the site to its existing ultimate outfall at the Loop 202 Channel. The proposed alignments for the alternative channels can be seen on Figure 5.

Grade control will be implemented to reduce channel velocities wherever necessary. Where steeper channels and higher velocities are unavoidable, erosion protection will be provided. Erosion protection for channels will be specified in the future in more detailed site plans. The primary channel corridors within the property will likely be designed with many natural elements including the use of native vegetation and typical desert landscaping materials. Some locations, particularly channels located in the vicinity of amenity areas, may be turf lined. Other locations, such as those that may be prone to erosion or that are located in areas of more intense land uses, may include sections that require other linings such as riprap or other robust revetment. All channel linings will be selected in accordance with the City's standards.

3.3 PROPOSED VILLAGE DEVELOPMENT

The Project will most likely develop various parcels at different times. In order to provide safe conveyance of 100-year peak flows and to minimize flood hazards during the construction of the development, the timing of construction of the proposed drainage corridors has been considered in order to safely manage offsite runoff through the site. Flows will be accepted and conveyed through the Project and discharged to their historical outfall in a similar manner similar to existing conditions. Final build-out drainage infrastructure has been sized to convey a minimum 1-foot of freeboard for either interim or final build-out conditions.

Each Village has been analyzed independently considering the drainage infrastructure required for interim or final build-out conditions. Refer to Figures 6–13 (Village 1-8 Interim Drainage Exhibit) of Appendix A. Areas where interim drainage infrastructure has been specified will likely have the option to be reclaimed or reduced once upstream villages are developed. At final design more detailed topo will be acquired and more detailed analyses will be provided quantifying offsite drainage impacts. Preliminary calculated flows and drainage infrastructure are graphically shown on Figures 6-13 with calculations included in Appendix D. Considerations for each village are discussed in detail below.

3.3.1 VILLAGE 1

The entrance road to the Village 1 parcels, west of Village 3, entering off of Elliot Road will be constructed as part of Village 1. With construction of the entrance road, offsite runoff from small drainage area to the east will be diverted south to culvert crossing running parallel with Elliot Road. Flows are conservatively assumed to freely cross over Hawes Road generated from the larger drainage area to the east. Culvert and channel capacities along Hawes Road will also be conservatively sized to convey the full flow from the tributary area north and east of the concentration point. Elliot Road has been analyzed to account for the additional flow from the undeveloped Village 3 parcels. Freeboard requirements within the channel will be met during the interim conditions and when Village 3 is fully developed, retaining the 100-year storm event.

3.3.2 VILLAGE 2

The undeveloped area east of Village 2 will have stormwater draining to the west, impacting the eastern boundary of Village 2. During interim and final build-out conditions, flows will continue to drain west along their natural flow patterns north of Elliot Road. An interim drainage channel will be required to convey the tributary flows south and then west around the Village 2 property as not to adversely impact properties to the south. The flows will drain to a spreader basin at the southwestern boundary of the Project, discharging to its historical outfall. When Village 7 is fully developed and retention within the parcel is provided, the area utilized for the interim channel can be fully recovered as offsite flows will no longer impact Village 2.

3.3.3 VILLAGE 3

As discussed in Village 1, flows are conservatively assumed to freely cross over Hawes Road generated from the tributary drainage areas to the north and east. Drainage infrastructure specified during this interim condition will also be required at final buildout.

3.3.4 VILLAGE 4

Similar to Elliot Road, Warner Road diverts flows generated from the north, west and away from Village 4. Flows generated to the east of Village 4 will be routed through the village and discharged at its historical outfall via an interim drainage channel. The flows will drain to a spreader basin at the southwestern boundary of Village 4, discharging from a spreader basin to its historical outfall. When Village 5 is developed and retention within the parcel is provided, the area utilized for the interim channel can be fully recovered.

3.3.5 VILLAGE 5

Drainage infrastructure specified during this interim condition will also be required at final buildout. As part of the final build-out conditions, conveyance channels along the southern and western boundary are proposed to be

constructed conveying runoff from a small offsite drainage area to the east. Flows will discharge via an existing culvert running parallel with Warner Road matching its historical outfall location.

3.3.6 VILLAGE 6

As shown on Figure 5, a portion of the drainage infrastructure required for final buildout will be constructed along the northeastern boundary during interim conditions for Village 6 conveying offsite runoff approaching from the northeast. Interim drainage infrastructure will be required along the southeastern boundary of the Village to convey runoff generated from the tributary undeveloped area. When Village 5 is developed and retention within the parcel is provided, the area utilized for the interim channel can be fully recovered and culverts reduced if deemed necessary.

3.3.7 VILLAGE 7

There is no offsite drainage infrastructure required for Village 7 as flows from the north will be diverted west along Elliot Road and flows from the east are cut off by the Loop 202.

3.3.8 VILLAGE 8

Drainage infrastructure specified at final build-out will be required, conveying offsite flows from the Elliot Road Channel through or around Village 8.

4.0 HYDROLOGIC ANALYSIS

The amount of offsite runoff approaching the Project from the east was quantified using the Rational Method in order to conservatively size onsite drainage infrastructure. Offsite runoff impacting the Project is generated from drainage areas to the east, approaching as sheet flow and shallow concentrated flows originating from undeveloped desert rangeland as shown on Figure 5 (Master Drainage Exhibit) of Appendix A. The following sections describe the methodology used for the analysis in this report. Hydrologic equations, calculations, and results from the analyses can be found in Appendix C.

4.1 RATIONAL METHOD ANALYSIS

Rational Method calculations were performed to conservatively estimate the rainfall runoff generated from the smaller tributary drainage areas impacting the Project in order to size drainage corridors through the Project in accordance with the DDM Volume 1. Topographic contour data obtained from the FCDMC was used to reference elevations used for the delineation of offsite drainage areas. Precipitation depths were determined using NOAA 14. The Rational Method calculations can be found in Appendix C. During final design of the site, detailed grading plans for the channels will be used in conjunction with normal depth hydraulic calculations to determine water surface profiles for the proposed channels.

5.0 HYDRAULIC ANALYSIS

5.1 PRELIMINARY OPEN CHANNEL DESIGN

Figures 5-13 detail the various channel segment ID's and the associated hydrologic flows through the property along with the approximate channel footprint. Hydraflow was used to perform normal depth calculations for each channel section which have been included in Appendix D.

Channels have been sized referencing parameters from the DDM, Volume 2. Design parameters and results for the proposed channel corridors are presented in the Channel Summary Table included in Appendix D. All channels will have a minimum freeboard of 1 foot. Other pertinent design criteria for the channels are described below:

- Manning's n: A Manning's n value of 0.032 has been used to represent the proposed channel lining for the offsite flow drainage corridors. Use of a midrange roughness coefficient allows for some flexibility in the channel lining, such as a combination of grass with native vegetation, sparsely placed shrubs, and decomposed granite.
- Side Slopes: Offsite drainage conveyance channels located throughout the property boundaries will be designed at 4H: 1V side slopes.
- Permissible velocities: A maximum permissible velocity of 5 feet per second (fps) has been used for the preliminary design of the channels, consistent with the maximum velocity specified for natural channels in the DDM.
- Longitudinal Slopes: Preliminary longitudinal slopes were determined based on existing ground slopes and were found to be approximately 0.4 %.

5.2 PRELIMINARY CULVERT DESIGN

Along with the channel configurations, Figures 5-13 also detail anticipated locations of culverts throughout the property based on preliminary roadway layouts which will be required to pass offsite 100-year peak flows under the roads assuming no overtopping. Similar to the open channel calculations, Hydraflow was utilized to quantify the approximate number and size of culverts required to convey flow beneath the roadways with no overtopping. Hydraflow cross sections are included in Appendix D.

6.0 ONSITE DRAINAGE

The proposed drainage infrastructure to manage stormwater for the Hawes Crossing development consists of manmade channels, culverts, street drainage networks and retention basins. This section describes the proposed concepts and future design of the required Project drainage infrastructure.

6.1 LOT DRAINAGE

Lots are to be graded to drain from the rear to the front and into the street. A minimum lot drainage time of concentration of 10-minutes for residential and commercial will be used to determine rainfall intensities in accordance with the EDS.

6.2 ONSITE STREET DRAINAGE

The Rational Method will be used to calculate 10- and 100-year onsite flows for pavement drainage design. For local streets, the onsite system will be designed to convey the peak 10-year flow between curbs and 100-year flow within the street right-of-way or drainage easements. Where possible, this will be accomplished with the use of 4-inch roll curb. 6-inch vertical curb will be constructed where a 4-inch curb cannot meet the above requirements. Arterial and major collector streets shall be designed utilizing 6-inch vertical curbs and will convey peak flows generated by the 10-year event such that the flows will be limited to a spread of one traffic lane in each direction and 100-year flow within the street right-of-way or drainage easements. Furthermore, an underground storm drain network will be utilized in design where a 6-inch curb cannot meet the aforementioned requirements.

6.3 DRAINAGE STRUCTURES

The drainage design for the Project outlines a system in which street flows will be directed to concentration points throughout the site where catch basins and storm drains will be placed to collect and convey the street runoff to retention basins. Underground storage basins may also be utilized for non-residential developments within the site in accordance with the EDS. Calculations to determine storm drain locations and sizes will be provided with the final drainage plans for each parcel of the development.

Erosion revetment such as riprap aprons, will be designed downstream of all concentrated discharge points, including storm drain pipe outlets, to protect against scour around these areas, facilitate uniform spreading of flows and decrease flow velocities. These structures will be designed in accordance with the design guidelines.

6.4 ONSITE STORMWATER STORAGE REQUIREMENTS

The onsite rainfall runoff from the site will be routed via in-street flow and storm drains, where necessary. The City requires 100-year, 2-hour retention be provided for new developments. The equations to calculate the 100-year, 2-hour required retention volumes are detailed below:

100-Year, 2-Hour

 $V_R = P/12*(C)*A$

Where:

V_R is the 100-year, 2-hour retention volume (ft³)

C is the runoff coefficient

P is the 100-year, 2-hour rainfall depth (inches)

A is the drainage area (ft²).

The NOAA Atlas 14 100-year, 2-hour rainfall depth of 2.17 inches was used as the precipitation depth. The NOAA 14 report for the Project has been included in Appendix C. Runoff coefficients for onsite drainage sub-basins were taken from Table 6.3 of the DPSM and Table 3.2 of the DDM, Volume 1, detailed in Table 1 below. The applicable runoff coefficients from this table were weighted based on the land uses and gross areas and are presented in Appendix E. Regional retention basins may be employed, in lieu of individual basins or underground storage, combining one or more parcels in order to make the most efficient use of the property. Onsite retention solutions will be determined as the Project is developed which will be detailed in subsequent parcel drainage reports.

Table 1: Land Use Summary Table							
Land Use	"C" Coefficient						
Medium Density Residential (3.5-5.0 DU/AC)	0.75						
Medium/High Density Residential (5.5-10 DU/AC)	0.80						
Urban Density Residential (10.5-25.0 DU/AC)	0.85						
Urban/ Mixed-Use (6-12 DU/AC)	0.80						
Technology/ Mixed Use	0.90						
Commercial	0.90						
Office	0.90						
Park/ Open Space	0.65						
Undeveloped Desert	0.50						

Excess flows generated from major storm events (those events exceeding the design storm event) will overtop the basins and be routed downstream via channels, instreet flows, storm drain pipes, and other retention basins to historical outfalls. The resulting peak flows discharging from the site will not be increased as a result of development.

6.4.1 RETENTION BASIN DEWATERING

Outlet facilities will generally consist of natural infiltration and gravity bleed-off pipes wherever possible, in accordance with the EDS. Retention basins will be placed at strategic locations to allow retained runoff to discharge to historical outfall locations. It should be noted that there are currently no existing stromdrain networks in the vicinity in which the development can drain via gravity bleed-off. To the extent possible, existing washes and other onsite and offsite drainage infrastructure will be utilized such that retention basins can bleed-off by gravity. However, due to the relatively flat terrain, gravity bleed-off may not be feasible for all portions of the site. If gravity bleed-off is not deemed feasible for portions of the Project, other alternatives for dewatering will be considered at final design in accordance with Section 806.21.2.1 of the EDS. Post construction geotechnical tests will be performed in order to determine the natural infiltration rate of each basin.

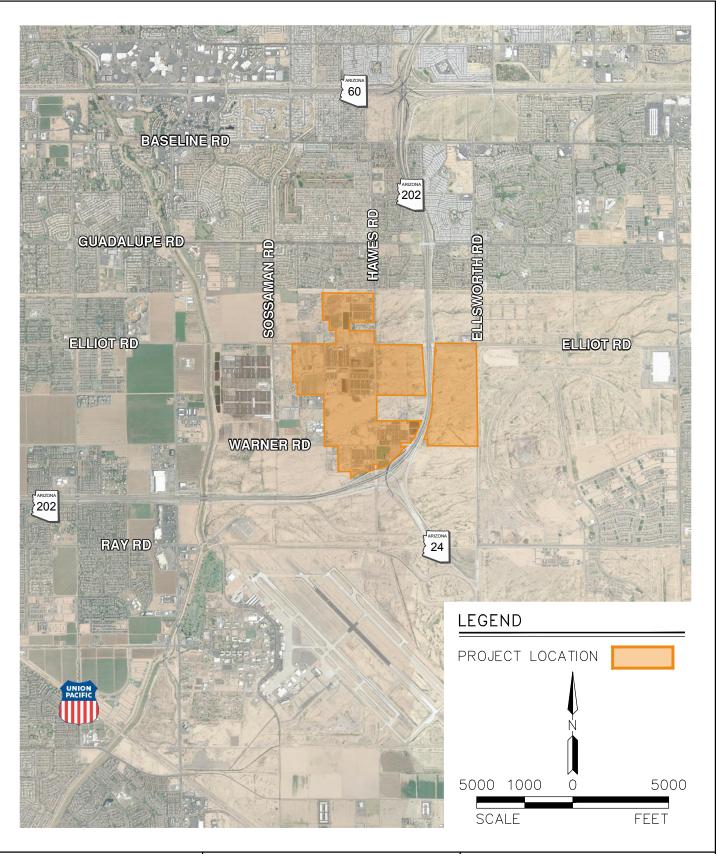
7.0 FINISHED FLOOR ELEVATIONS

In the event of a storm where retention volumes are exceeded, the Project will be designed with a means to outfall at a number of locations throughout the site. Finished floor elevations within the Project will be set a minimum of 12-inches above the high adjacent 100-year water surface elevation.

8.0 SUMMARY AND CONCLUSIONS

The proposed development will comply with the City of Mesa's required drainage standards as well as Maricopa County Planning and Development Design guidelines and regulations. Hawes Crossing will meet the specified retention requirements such that flows generated from the 100-year event will not be anticipated to result in adverse impacts to either downstream existing properties or drainage ways from the Project. This report has determined that:

- The design of the hydraulic facilities is in accordance with the City's and the FCDMC's requirements.
- Channels will be designed to convey offsite 100-year peak flows through the Project with a minimum 1-foot of freeboard. Maximum flow velocities in the channels will be less than permissible velocities for the selected linings.
- Streets will be designed to adequately convey the calculated peak 10-year flows between curbs and 100-year flows within the street right-of-ways or drainage easements.
- Onsite flows will be conveyed to stormwater storage basins or underground storage near low points via surface flow and, when necessary, storm drain pipes.
- Riprap aprons will be placed downstream of all storm drain outlets and other points of concentrated flow to protect against scour.
- Onsite retention basins and underground storage will provide, at a minimum, a storage volume equivalent to the 100-year, 2-hour runoff.
- Basins will be drained within 36 hours. The dewatering of the retention basins will be accomplished by the combination of natural infiltration and bleed-off pipes wherever possible.
- All finished floor elevations will be set a minimum of 12 inches above the retention basin overflow elevations and 100-year water surface elevations in the adjacent drainage corridors.
- Individual parcel drainage reports will be prepared based on the future development of the Project. These reports will contain final calculations and design for the following:
 - o In-street flow capacities;
 - Scupper and catch basin sizing;
 - Storm drain pipe system design capacities;
 - o Retention basin geometries and volumes;
 - o Retention basin high-water outlet structures;
 - Retention bleed-off structures.



9.0 REFERENCES

- City of Mesa, 2017. Engineering and Design Standards. City of Mesa, Arizona. July, 2017.
- Flood Control District of Maricopa County, July, 2004. *Elliot Outfall Channel Design Report*. Phoenix, Arizona.
- Flood Control District of Maricopa County, 2011. East Mesa Area Drainage Master Plan Update. Maricopa County, Arizona. August, 2011.
- Flood Control District of Maricopa County, 2018a. *Drainage Design Manual for Maricopa County, Arizona, Volume 1 Hydrology*. Phoenix, AZ.
- Flood Control District of Maricopa County, 2018b. *Drainage Design Manual for Maricopa County, Arizona, Volume 2 Hydraulics*. Phoenix, AZ.
- Flood Control District of Maricopa County, 2018C. Drainage Policies and Standards Manual for Maricopa County, Arizona. Phoenix, AZ.

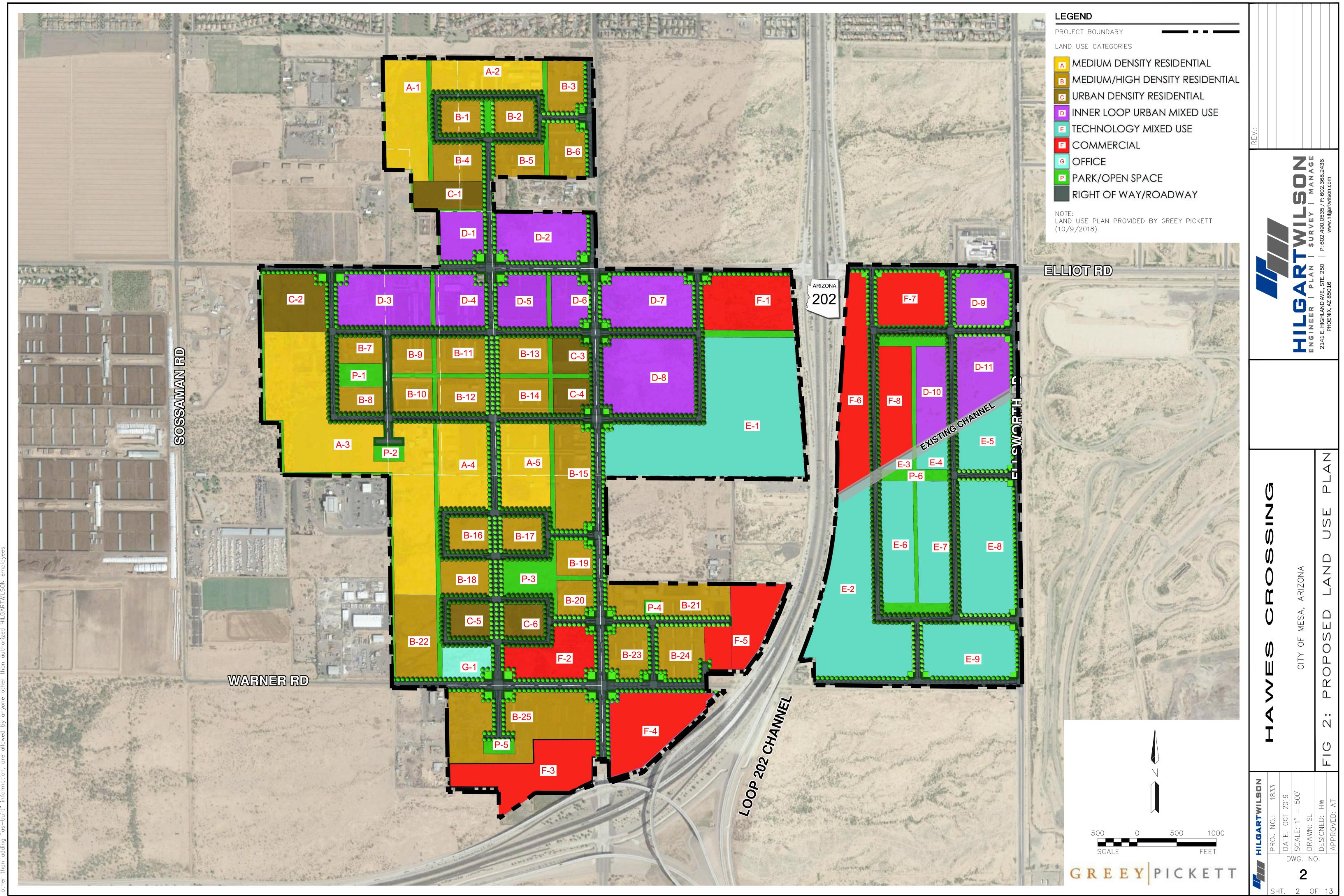
APPENDIX A FIGURES

PROJ.NO.: 1833

DATE: MAR 2019

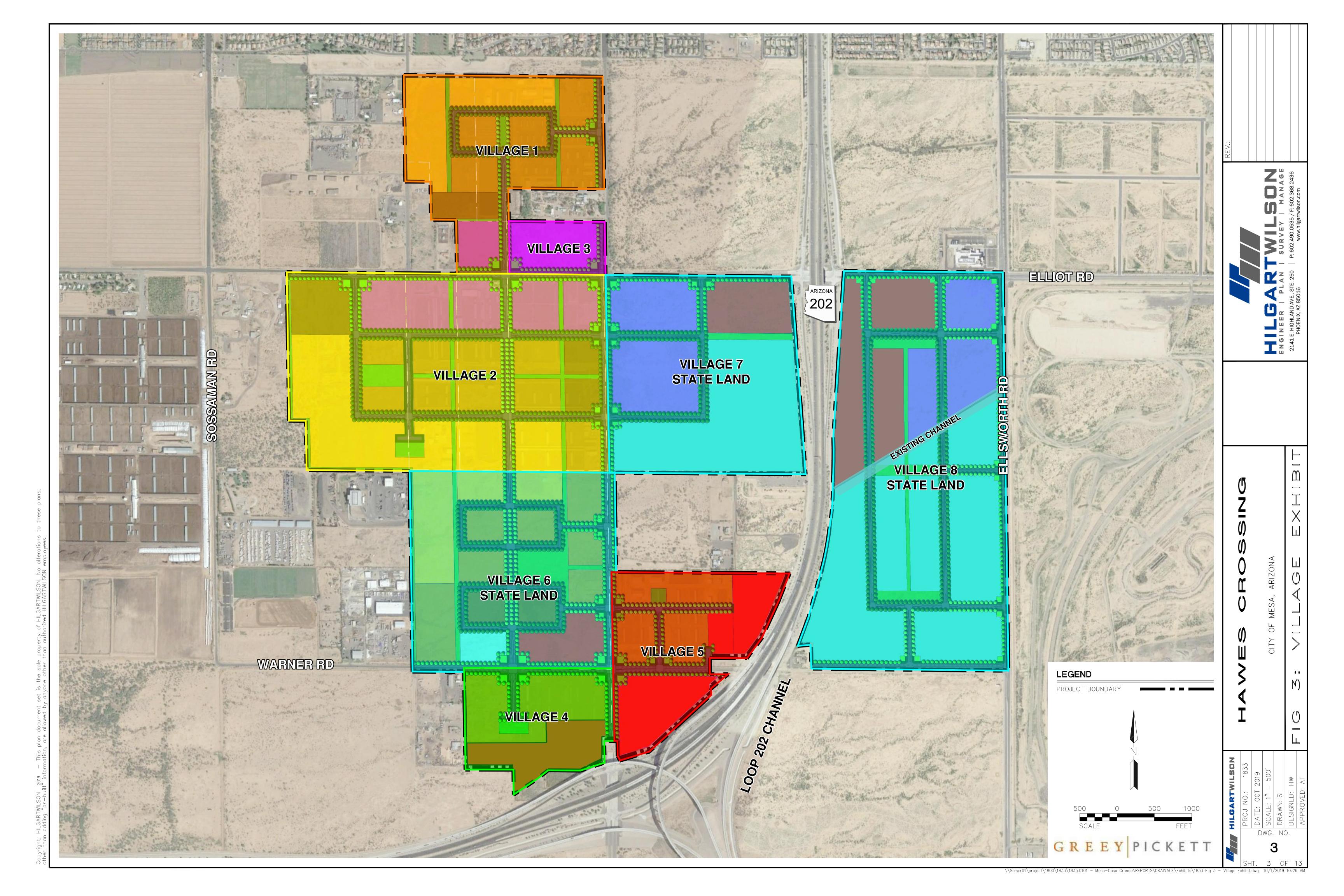
SCALE: 1" = 5,000'

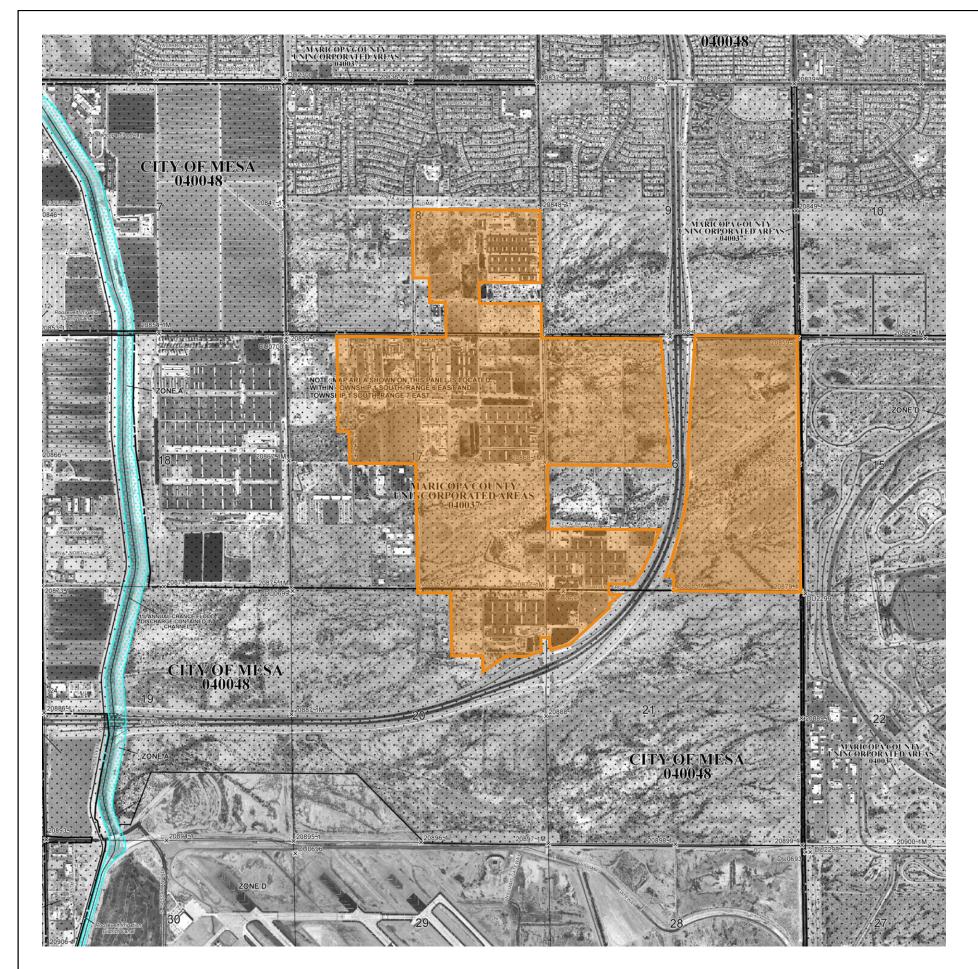
DRAWN BY: SL

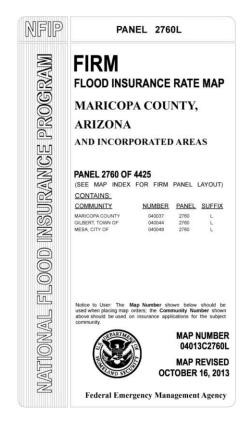

CHECKED BY: AT

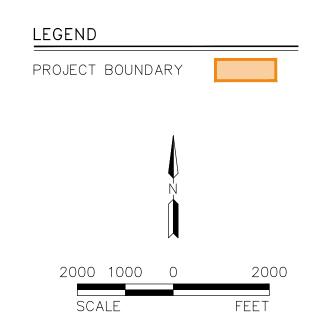
HAWES CROSSING

CITY OF MESA, ARIZONA

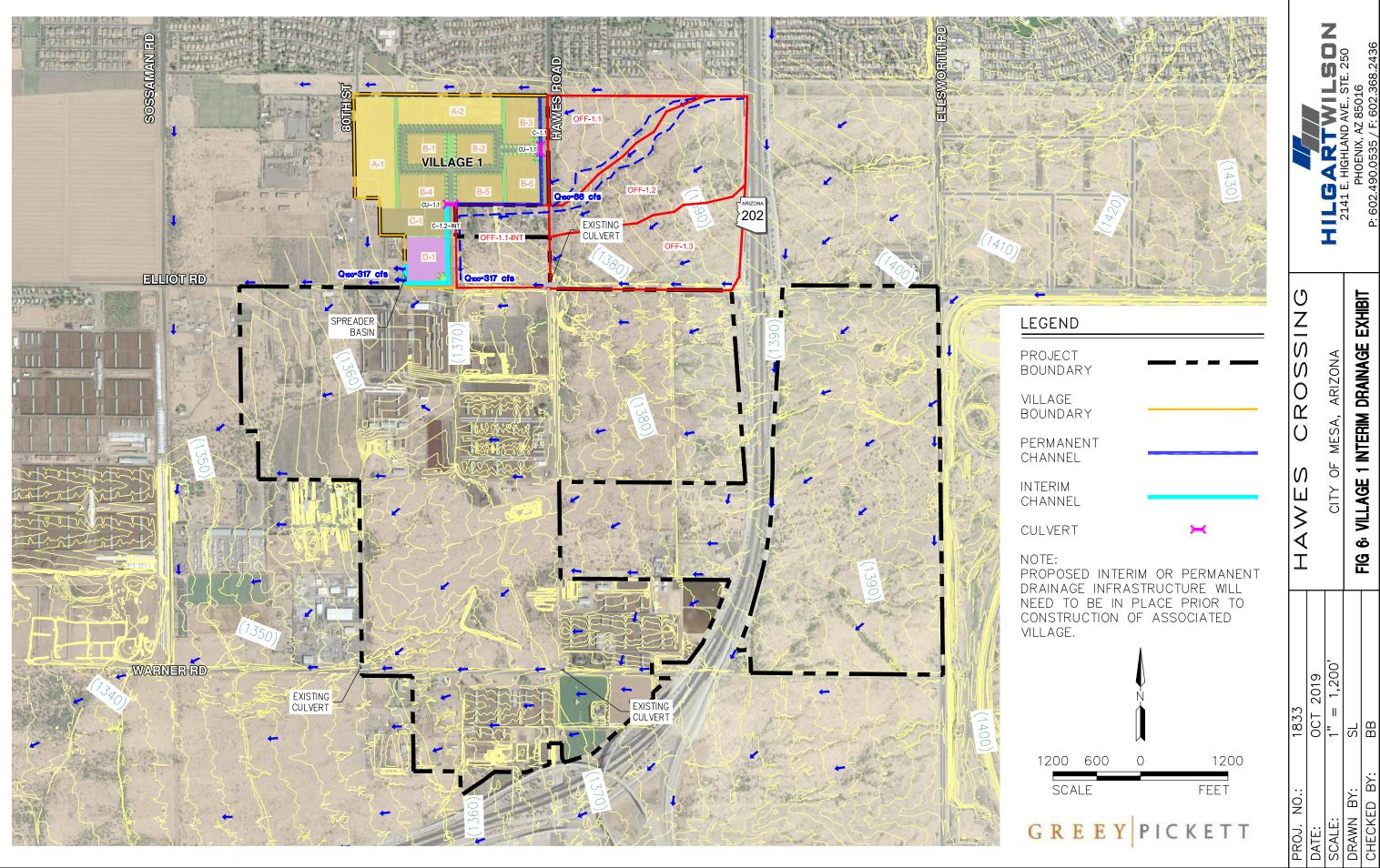

FIG 1: VICINITY MAP

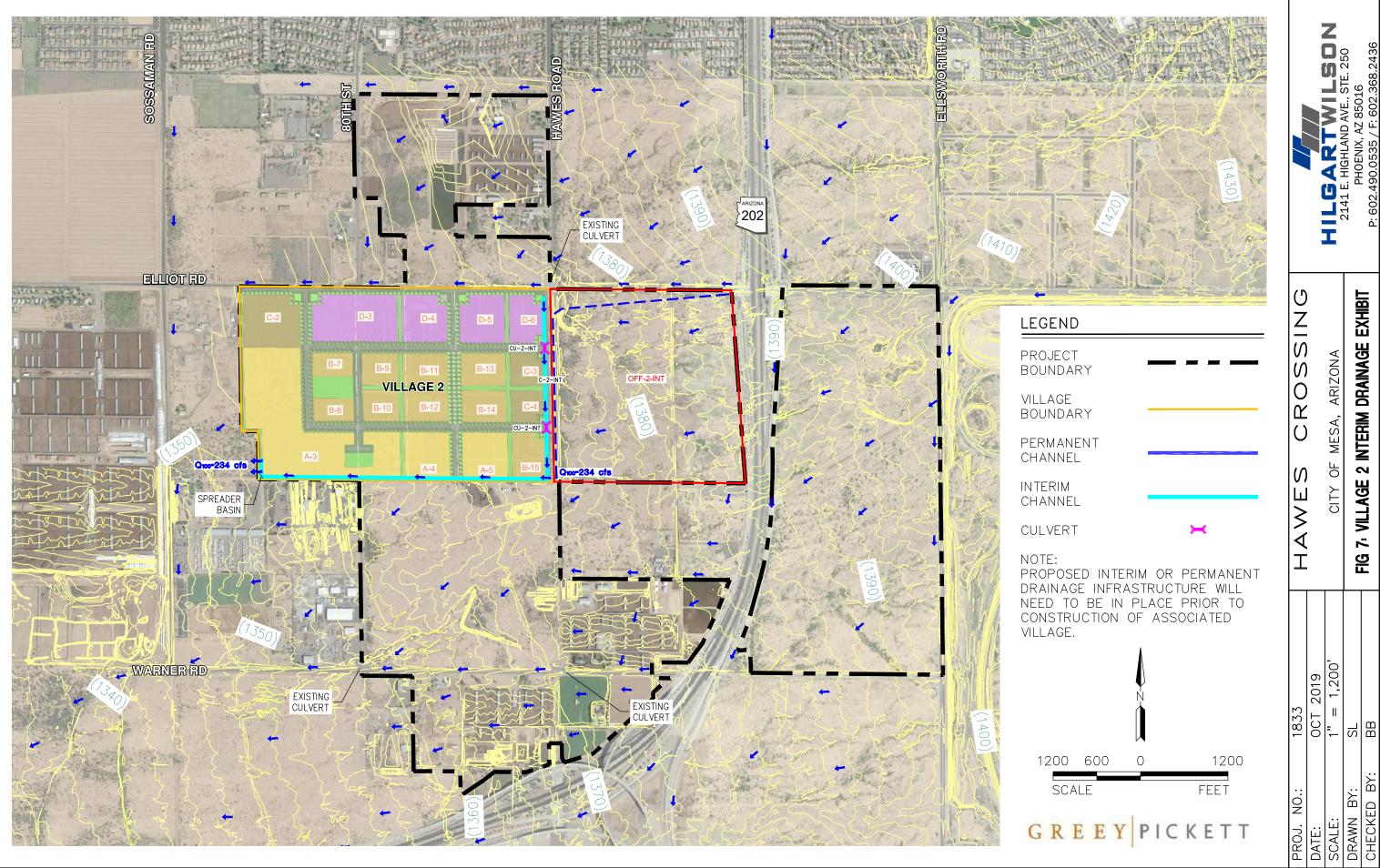


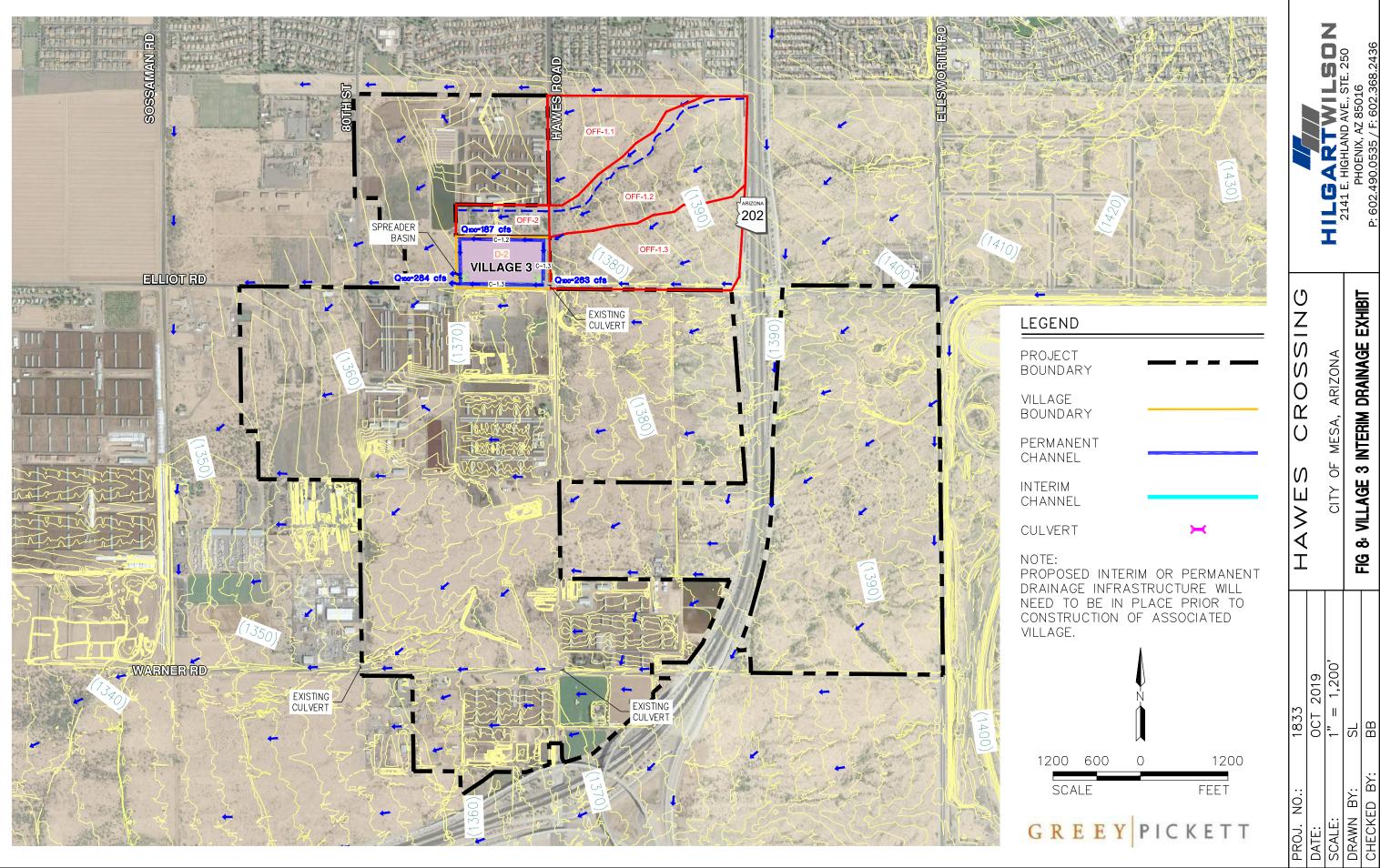


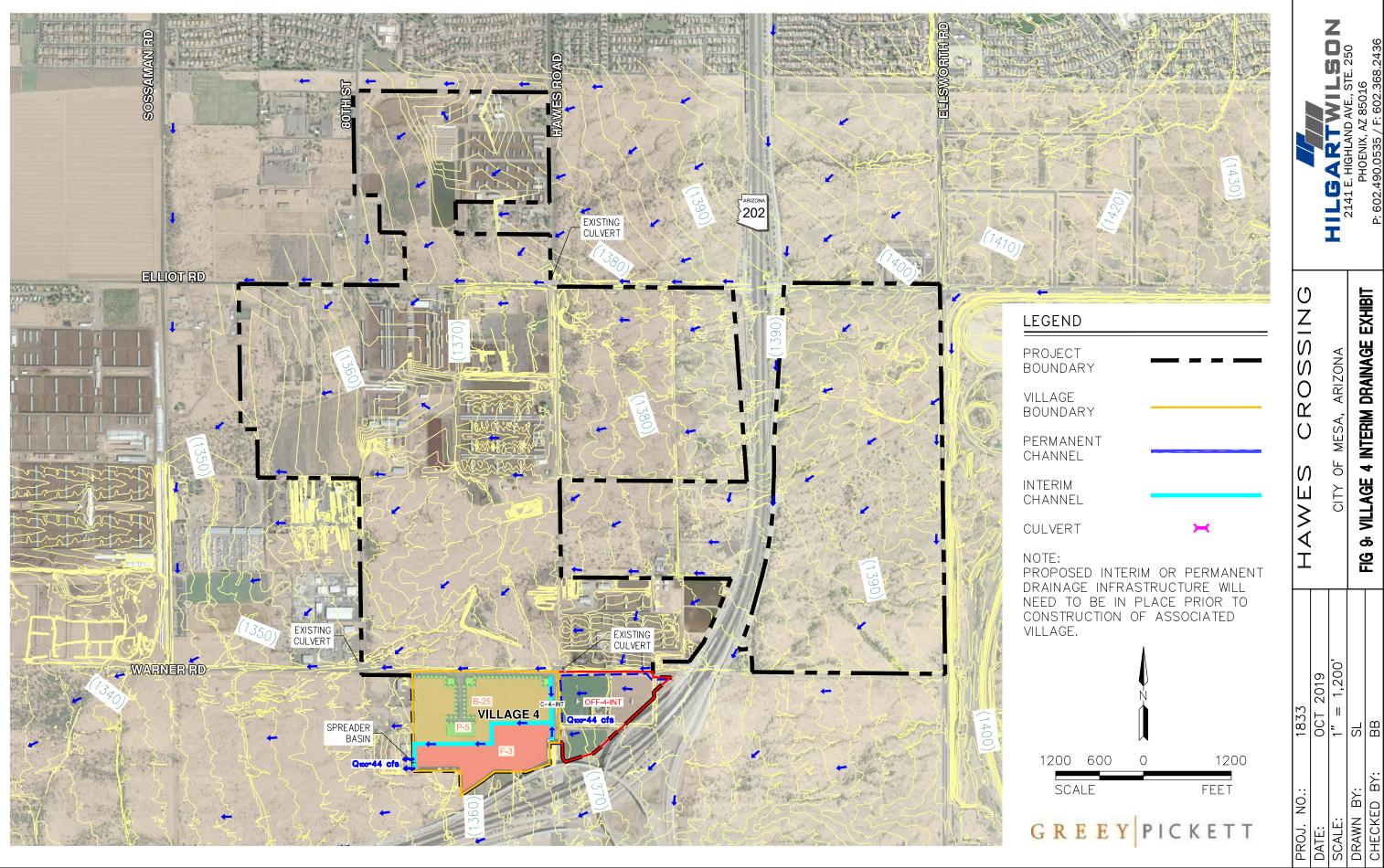

byright, HILGARTWILSON 2019 — This plan document set is the sole property of HILGARTWILSON. No alterations to the

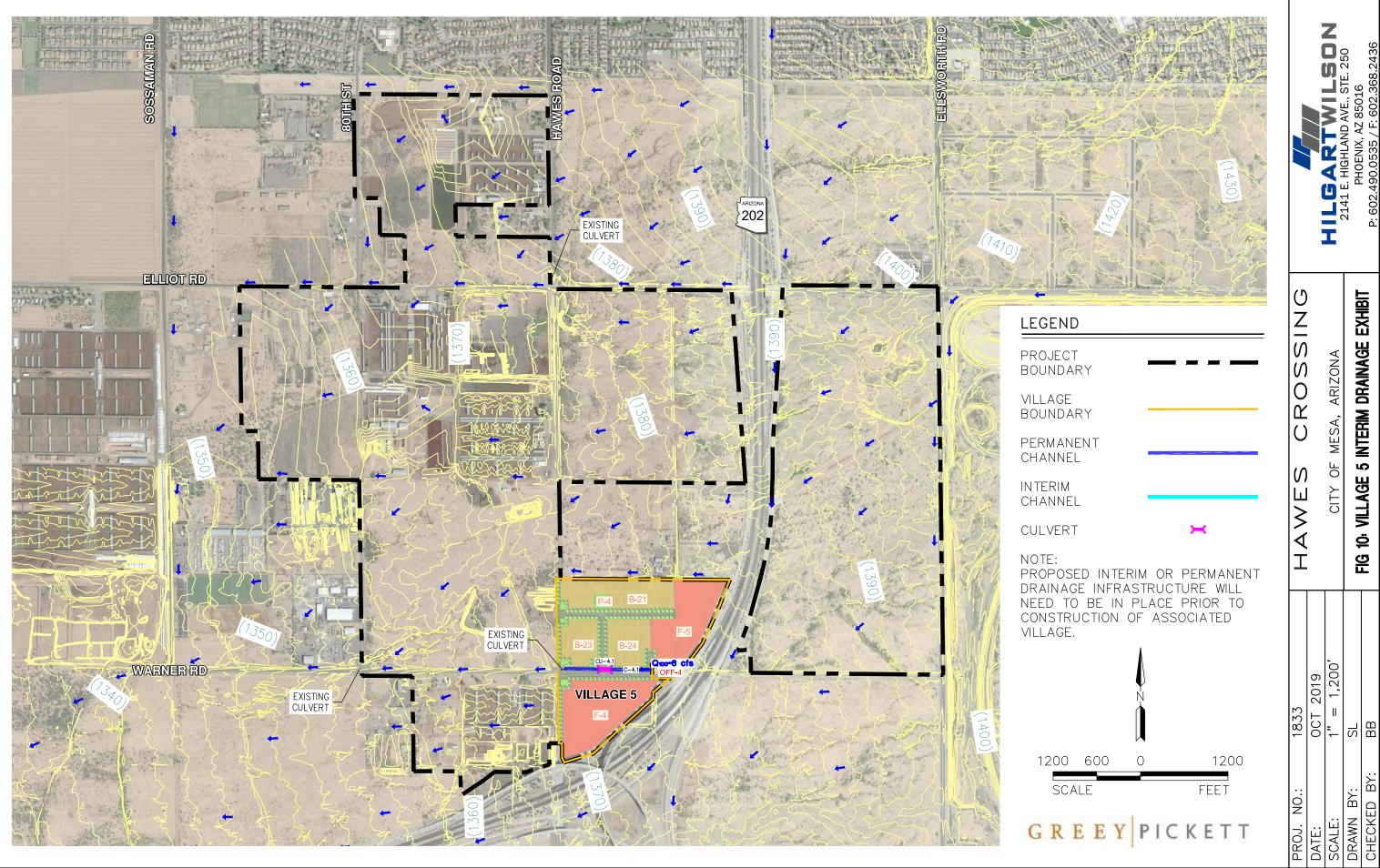
\Server01\project\1800\1833\1833.0101 - Mesa-Casa Grande\REPORTS\DRAINAGE\Exhibits\1833 Fig 2 - Land Use Plan - Boundary Number Research.dwg 10/1/20

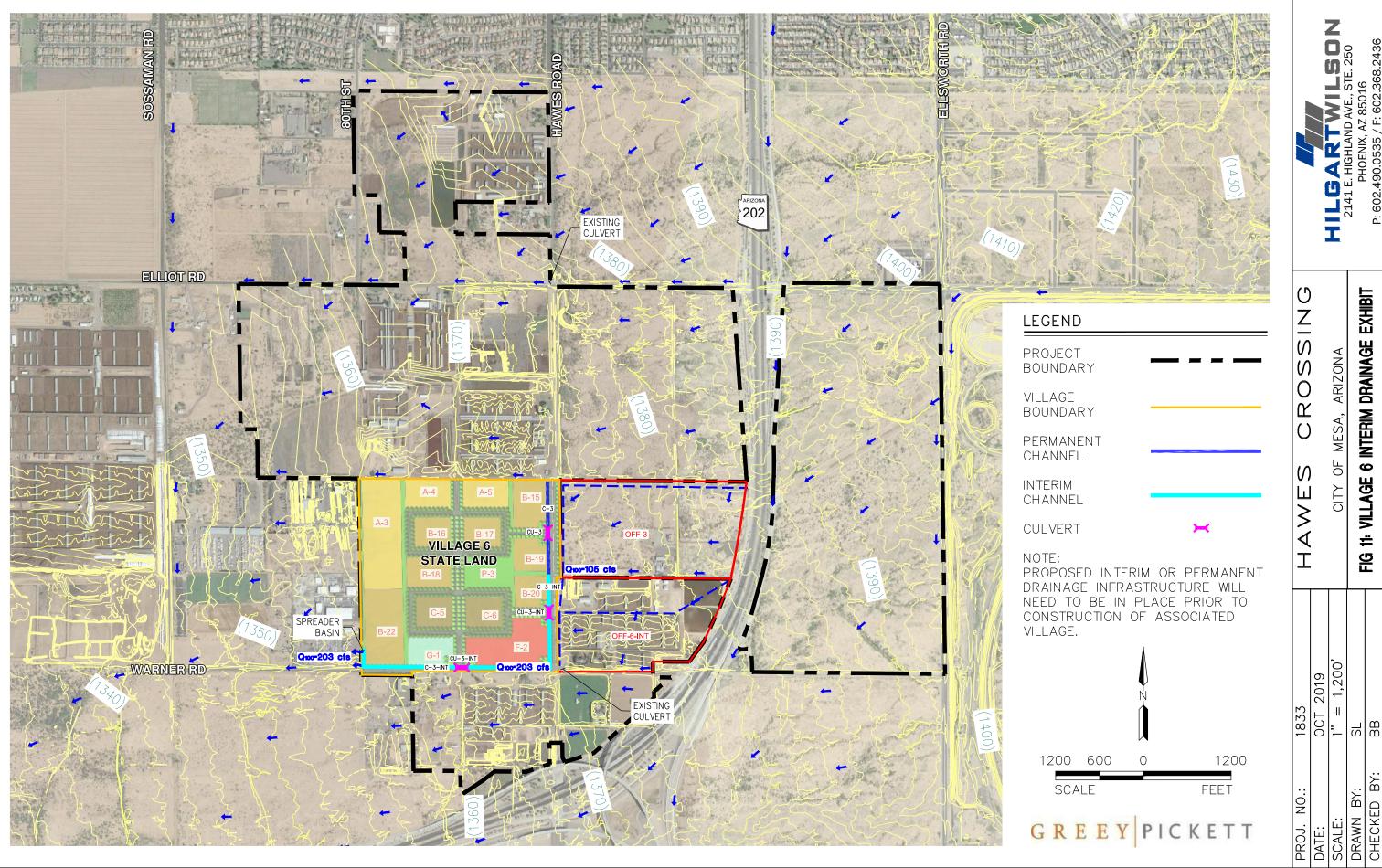

HAWES CROSSIN

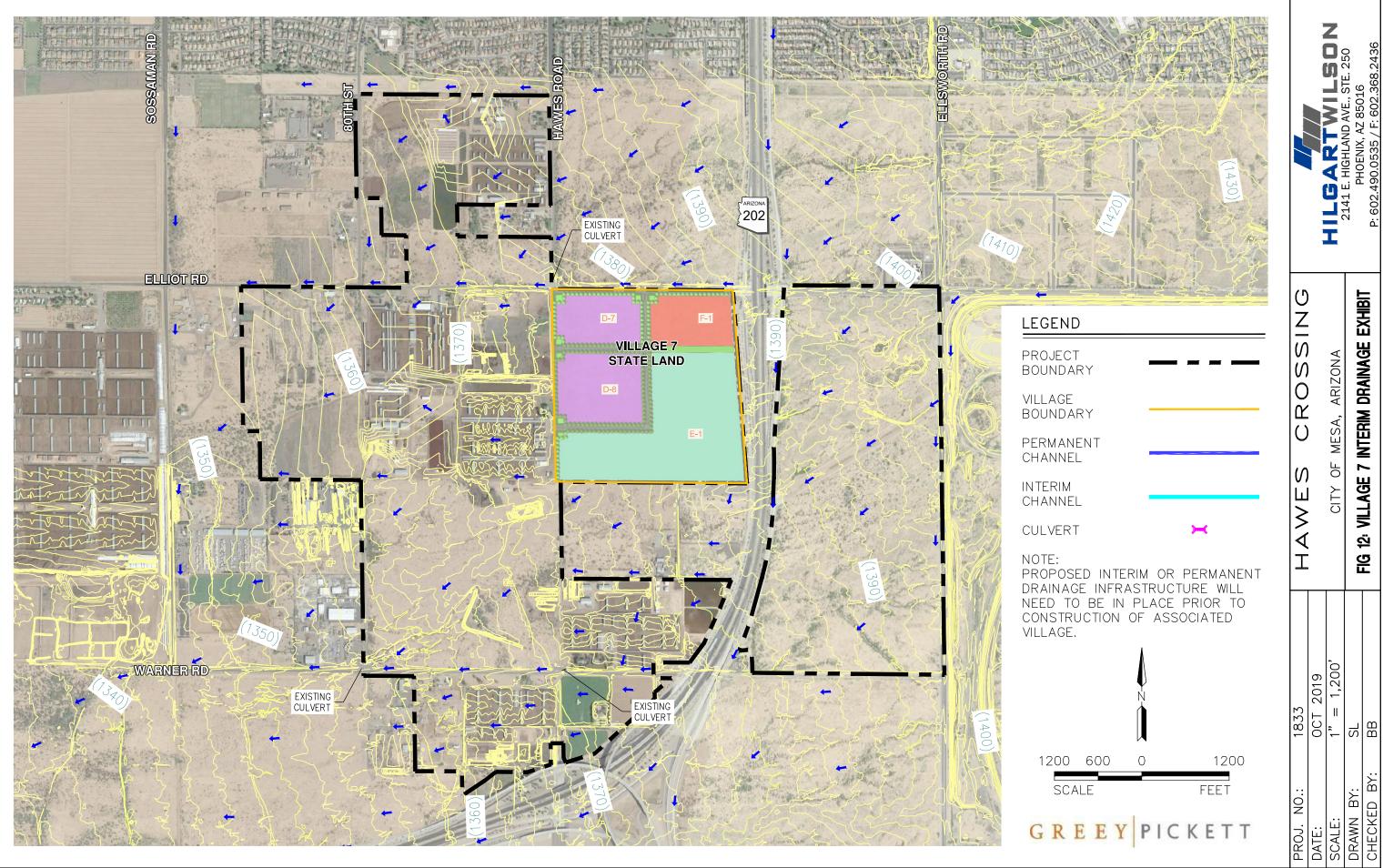

1833 MAR 1" = | SL

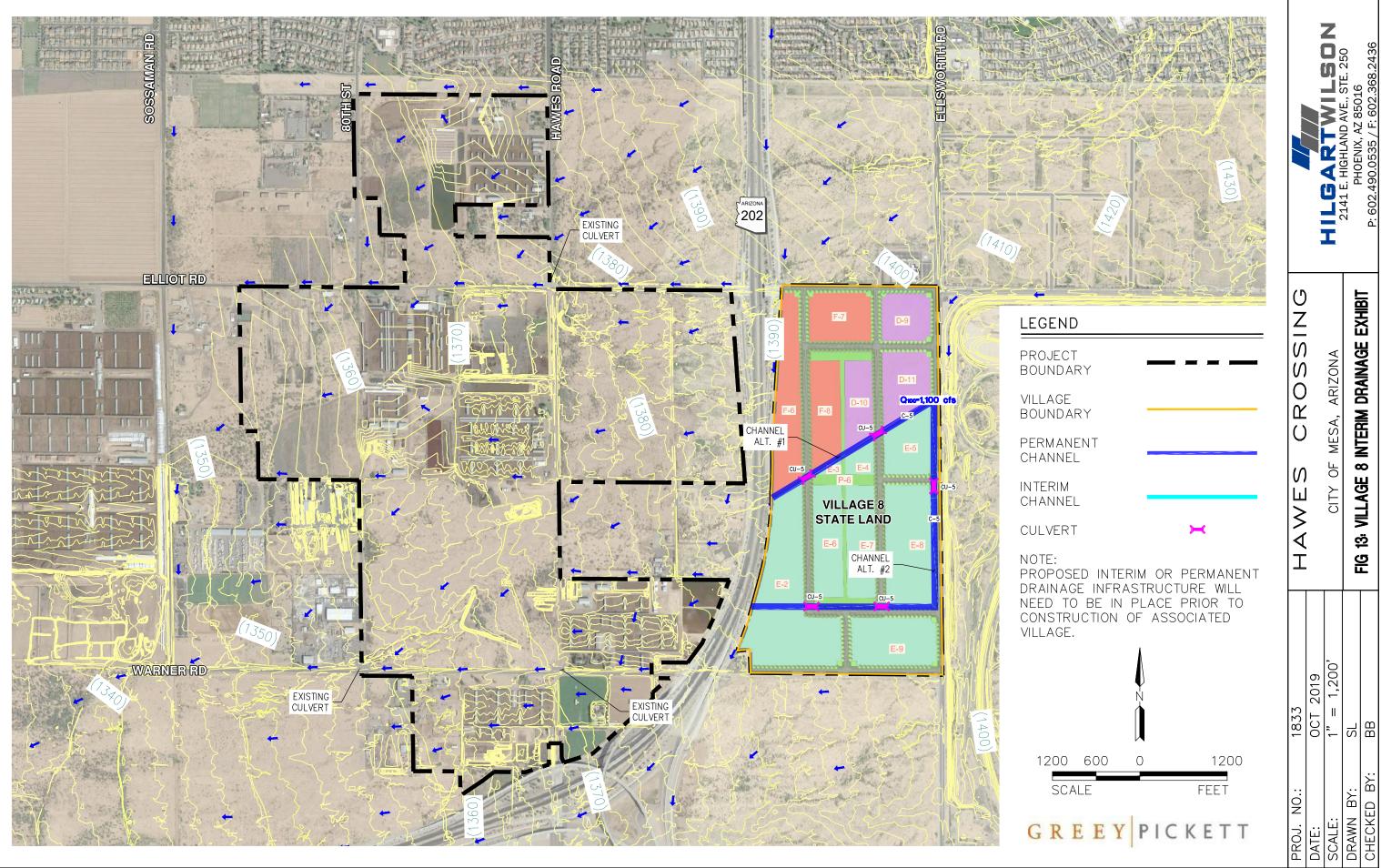

Z


SO E. 250


HILG 2141 F





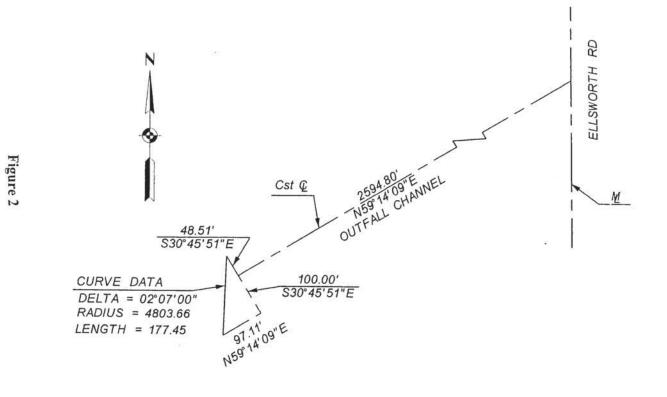


APPENDIX B PREVIOUS DRAINAGE STUDIES

ELLIOT OUTFALL CHANNEL

DESIGN REPORT

July, 2004


Prepared For: Flood Control District of Maricopa County Chief Engineer & General Manager

Prepared by: Engineering Division Flood Control District of Maricopa County

FCD Project No. 442-04-31

Elliot Outfall Channel
Design Report
July, 2004

2.0 SELECTED CHANNEL ALTERNATIVE

The selected cross section for this project is an 10-foot deep trapezoidal section with a 20-foot bottom and 6:1 side slopes. The bottom and sides will be planted with native grass. This conforms with the channel on the west side of Ellsworth Road. This section is shown in Figure 3.

3.0 HYDROLOGIC ANALYSIS

The Project will be designed to convey the 100-year flow identified in the East Mesa Area Drainage Master Plan, which is 1100 cfs. No significant inflow locations exist along the Project length. Therefore, no additional field investigation of the HEC-1 is required to refine inflow values.

4.0 HYDRAULIC ANALYSIS

The proposed channel improvements have been analysed using HECRAS and the output is shown in Appendix I.

5.0 CONSTRUCTION COST ESTIMATE

The estimated constructed cost for this project is \$502,247.96. A complete construction cost estimate is shown in Appendix II.

6.0 CONSTRUCTION SPECIAL PROVISIONS

The Construction Special Provisions are shown in Appendix III.

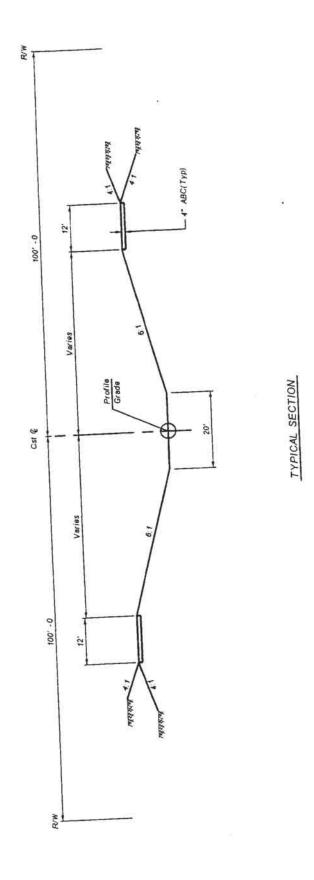


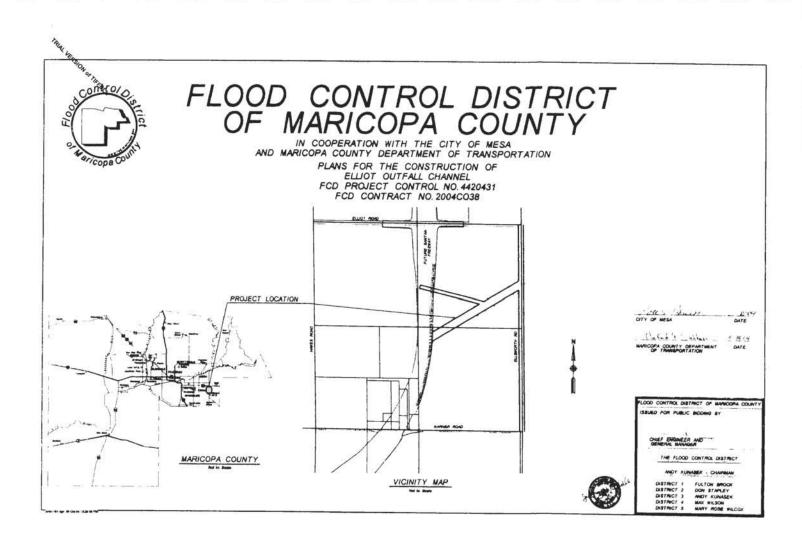
Figure 3

7.0 SUPPLEMENTARY GENERAL CONDITIONS

The Supplementary General Conditions Provisions are included in Appendix IV.

8.0 CONSTRUCTION PLANS

The Construction Plans are included in Appendix V.


APPENDIX I

HECRAS OUTPUT

			(cfs)	(ft)	(ft)	(ft)	(h)	(fuft)	(fl/s)	(eq ft)	(4)		(ft)	(ft)
Reach	2700	PF 1	1100.00	1389 00	1392.57	1392 25	1393 43	0.016456	7 45	147 72	62 78	0.86	1397 00	1397.00
Reach	2612 280	PF 1	1100 00	1386 91	1392 53		1392 74	0 002373	3 65	301 59	87 38	0.35	1394 91	1394 91
Reach	12512 280	PF 1	1100.00	1386 81	1392 25		1392 48	0 002733	3 54	286 21	85 25	0.37	1394 81	1394 81
Reach	2412.280	PF 1	1100 00	1386 71	1391 91		1392 18	0 003334	4 14	265 88	82 33	0.41	1394 71	1394 71
Reach	2312 280	PF 1	1100 00	1386 61	1391 45		1391 78	0 0045661	4 65	236 77	78 00	0.47	1394 61	1394 61
Reach	2212 280	PF 1	1 1100.00	1386 51	1390 06	1389 79	1390 94	0 0167791	7 50	146 68	62 59	0.86	1394 51	1394 51
Reach	2112.280	PF 1	1100 00	1384 41	1390 03	_	1390 24	0 002371	3 65	301 69	87 411	0.35	1392 41	1392 41
Reach	2012 280	PF 1	1100 00	1384 31	1389 75		1389 98	0 002734	3 84	286 14	85 24	0 37	1392 31	1392 31
Reach	1912 280	PF 1	1100 00	1384 21	1389 41		1389 67	0 003337	4 14	265 83	62 33	041	1392 21	1392 21
Reach	1812 280	PF 1	1100 00	1384 11	1388 94		1389 28	0 004572	4 65	236 60	77 94	0.47	1392 11	1392 11
Reach	1712.280	PF 1	1100 00	1384 01	1387 56	1387 29	1388 44	0.016738	7 49	146 82	62 63	0.66	1392 01	1392 01
Reach	1612 280	PF 1	1100 00	1381 91	1387 53		1387 74	0.002372	3 65	301 63	87 39	0.35	1389 91	1389 91
Reach	1512 280	PF 1	1100 00	1381 81	1387 25		1387 48	0 002740	3 85	285 93	65 21	0 37	1389 81	1389 81
Reach	1412 280	PF 1	1100 00	1381 71	1386 91		1387 17	0 003335	4 14	265.87	82 32	0.41	1389 71	1389 71
Reach	1312 280	PF 1	1100 00	1381.61	1386 44	- 100 Billion	1386.78	0 004582	4 65	236 42	77 92	0.47	1389 61	1389.61
Reach	1212 280	PF 1	1100 00	1381 51	1385 09	1384 79	1385 94	0 016344	7.43	148 10	62 87	0.85	1389 51	1389 51
Reach	1112 280	PF 1	1100 00	1379 411	1385 051		1385 251	0 002330	3 62	303 58	87 65	0.34	1387 41	1387 41
Reach	1012.280	PF 1	1100 00	1379 31	1384 78		1385 00	0 002680	3 82	288 31	85 56	0.37	1387 31	1387 31
Reach	912 2800	PF 1	1100 00	1379 21	1384 45		1384 71	0 003231	4 09	269 01	82 79	0.40	1387 21	1387 21
Reach	812 2800	PF 1	1100 00	1379 11	1384 00		1384 33	0 004333	4 56	241 36	78 68	0.46	1387 111	1387 11
Reach	712.2800	PF 1	1100 00	1379 01	1382 29	1382 29	1383 40	0 023321	8.46	130 05	59 33	1.01	1387 01;	1387.01
Reach	612.2800	PF 1	1100.00	1376 77	1381 67		1381 99	0 004322	4 55	241 59	78 72	0 46	1384 77	1384 77
Reach	512 2800	PF 1	1100 00	1376 67	1379 95	1379 95	1381 06	0 023432	8 47	129 81	59 26	1 01	1384 67	1384 67
Reach	412 2800	PF 1	1100 00	1376 57	273 40	57.68	273.43	0 001002	10000	809 99	5 93	0 DO	1384 69	1376 57

APPENDIX V

CONSTRUCTION PLANS

GENERAL NOTES

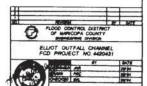
- T ALL CONSTRUCTION TO BE PERFORMED ACCOMMING TO APPLICABLE BAG STANDARD DETAILS AND MAG SPECIFICATIONS, DATED 1888 AND REVISIONS THROUGH 3003
- 2 FACILITIES WHICH ARE NOT SPECIFICALLY LOCATED WITH ACTUAL HORIZONTAL AND VERTICAL CONTROLS ARE APPROXIMATE AND TO THE BEST AVAILABLE INFORMATION
- 3 EXISTING UTAJTERS AND OTHER PAGELTRES HAVE BEEN PLACED ON THE PLANE PROBE PRED BURNEYS EXCESTEN MAPS AND OTHER CHARRIEST PLANE SITTING THE AREA OF THIS PROBECT THE CONTRACTOR BULD DETERMINE THE EXCEL FLOCATION AND OR ELEVATION OF EXCESTED UTAJTES SHOULD PERTAIN TO AND AFFECT THE CONSTRUCTION OF THE PROMICT
- 4 THO (2) HORKING DAYS PRIOR TO EXCAVATING THE CONTRACTOR SHALL CALL FOR BLUE STAKE AT THE BLUE STAKE CENTER CENTER (PHONE: 1880-STAKEIT)
- S THE CONTRACTOR SHALL OSTAIN ALL MECHBBARY PERSITE PRIOR TO CONSTRUCTION
- B THE FLOOD CONTROL DISTRICT OR CITY OF MESA IS NOT RESPONSIBLE FOR LIABLITY ACCOUNTED DUE TO DELAYS AND/OR DAMAGE TO UTBLITIES IN COMMUNICATION WITH TITRE COMMUNICATION.
- 7 ANY BORK PRIFORMED WITHOUT THE APPROVAL OF THE FLOOD CONTROL DISTRICT AND/OR THE BRIGHMER AND ALL WORK AND WATERIALS NOT IN CONFORMANCE WITH THE SPECIFICATIONS IS SAURCT TO RESOVAL AND REPLACEMENT AT THE CONTRACTORS EXPRESSED.
- B THE ENGINEER WILL DETERMINE THE NUMBER AND LOCATION OF THE REQUIRED COMMACTION TESTS FOR STRUCTURAL BACKFULL
- B TRAFFIC CONTROL SHALL BE MANTANNED IN ACCOMPANCE BITH MAG SPECIFICATION 60, PART IN OF THE MANUAL ON UNBFORM TRAFFIC CONTROL DEVICES (1988 ESTITION) HOLLDING REVISION 3 DATED BETTEMBER 1, 1993
- 10. CONTRACTOR BHALL REPLACE PAVEMENT TO THE EXISTING GRADES SHOWN ON THE PLANS
- 11. EXACT POINT OF MATCHING TERMINATION AND OVERLAY WILL BE DETERMINED IN THE FIELD BY THE EMBERGER
- 12 NO JOB WILL BE CONSIDERED COMPLETED UNTIL CURBS PAYEMENT AND SIDERALKS HAVE BEEN BIRDT CLEAN OF ALL DIRT AND DEBRIS
- 13 PRIOR TO FINAL APPROVAL AND ACCEPTANCE OF THE BORK THE CONTRACTOR HILL BE REQUIRED TO CLEAN ADMICENT (OPF-PROJECT) POADWAYS USED DURING THE COUNTRY OF CONTRACTOR

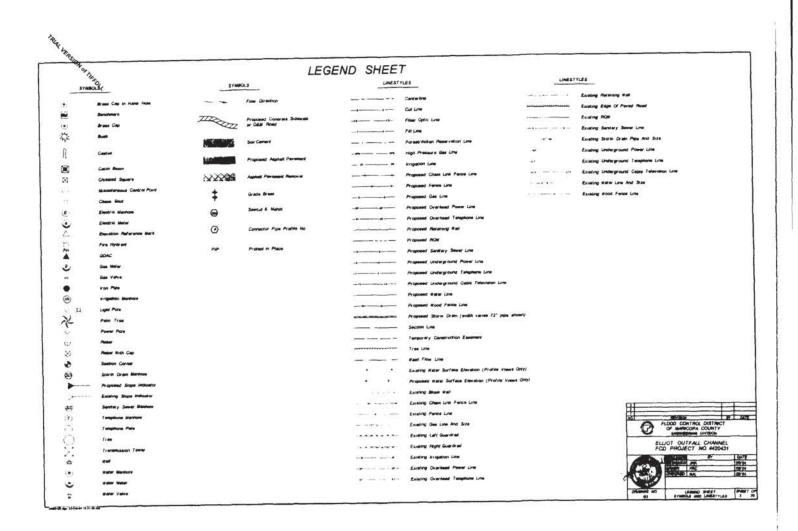
STRUCTURAL NOTES

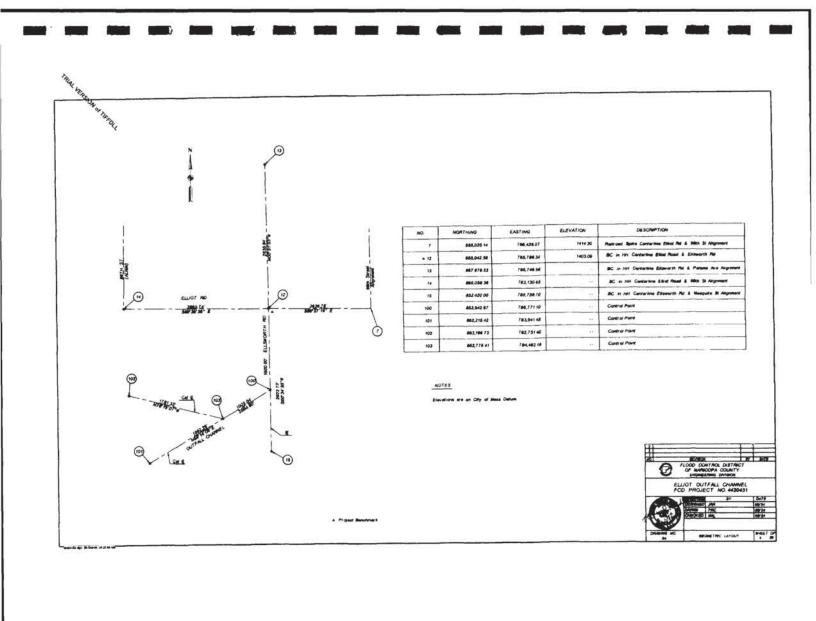
- ALL CONSTRUCTION SHALL CONFORM TO MAS STANDARDS DETAILS SPECIFICATIONS DATED 1998 INCLUDING ALL REVISIONS THRU 2003
- 2 DESIGN IS IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR INGRISH BRIDGES, DIVISION 1.17TH EDITION 3002
- 3 REMFORCING STEEL SHALL CONFORM TO ASTM SPECIFICATION ASTS GRADE SO
- 4 STRESSES 10 34,000 PSF GRADE BO REINFORCING STEEL
- S ALL RESIPONOING STEEL PLACEMENT DISENSIONS SHALL BE TO THE CENTER OF BARS UNLESS OTHERWISE MOTED
- 8 ALL REIMFORCING STEEL BHALL HAVE 3" CLEAR COVER UNLESS OTHERWISE MOTED
- 7 STRUCTURAL STEEL BHALL CONFORM TO ARTH SPECIFICATION ASS
- 2 ALL WELDING BHALL CONFORM TO THE REQUIREMENTS OF THE AMERICAN WELDING SOCIETY, STRUCTURAL WELDING CODE, REVISION 1996
- S DIMENSIONS SHALL NOT BE SCALED PROM DRAWING
- NO CHAMPER ALL EXPOSED COMPMERS 3/4" UNLESS OTHERWISE MOTED
- 11 CONCRETE COMPRESSIVE STRENGTH SHALL BE 1,000 PM MAR UNLESS OTHERWISE NOTED

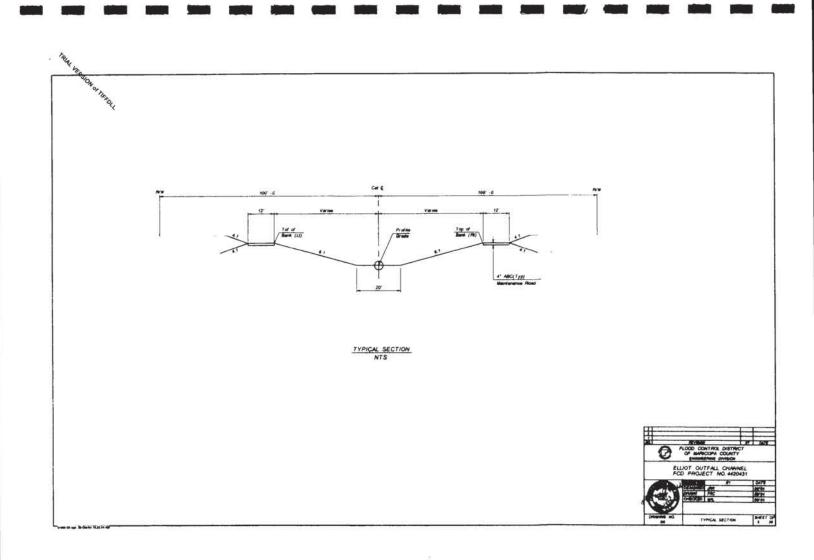
INDEX OF SHEETS

DRAWING NO	TITLE	SHEET NO.
91	COVER SHEET & VICINITY MAY	
92	GENERAL NOTES & MIDEX OF SHEETS	2
63	LEGEND SHEET	1
04	GEOMETRIC LAYOUT	
95	TYPICAL SECTIONS	
Q\$1	QUANTITY SUBBLARY	
D1-D4	DETAIL SHEETS	7. 10
C01- C05	CIVIL/CONSTRUCTION SHEETS	F1 15
x501- X 906	CHOSS SECTION SHEETS	14-20

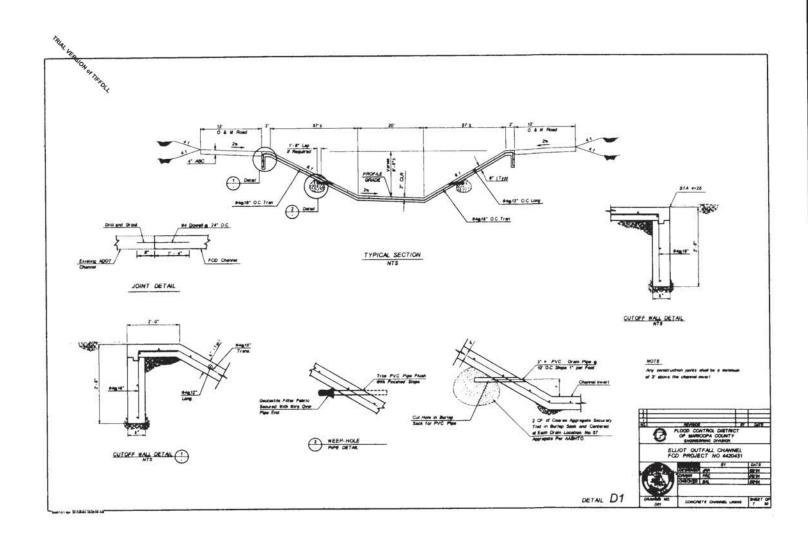

ABBREVIATIONS

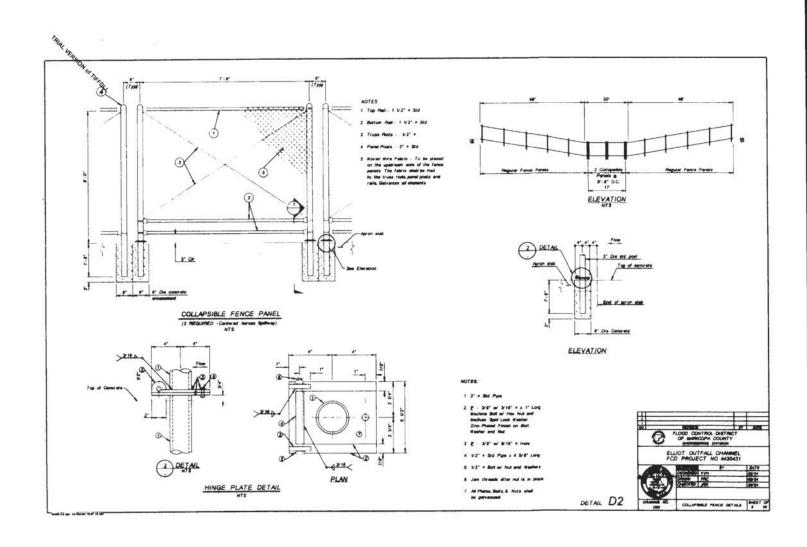

CST	CONSTRUCTION
DM	DOUBLE
DESC	DESCRIPTION
EQ	EQUAL.
FOC	FIBER OFFIC CABLE
0	GUTTER ELEVATION
OP	OVERHEAD ELECTRIC
P	PAVEMENT ELEVATION
PG	PAGE
P/L	PROPERTY LINE
PRY	PRIVATE
SPG	SPACING
STR	STRUCTURE
uat	UNDERGROUND TELE CAR
TRM	TEMPORARY BENCHMAN

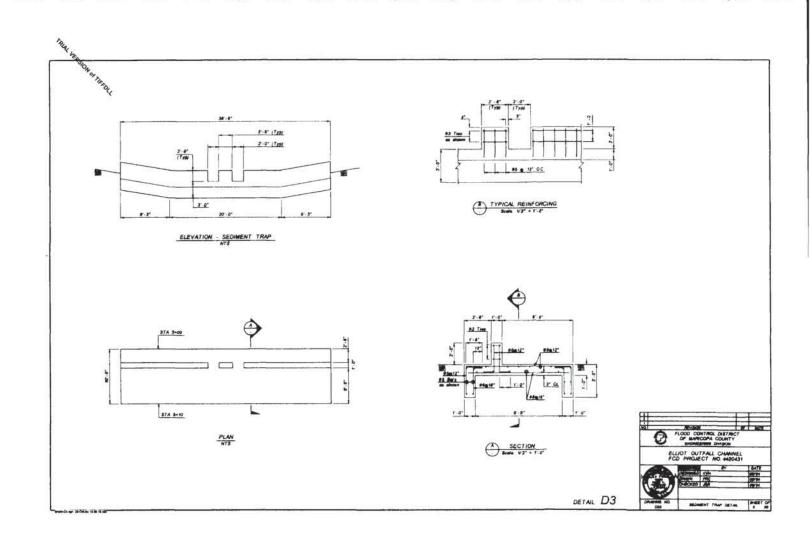

PROJECT BENCHMARKS

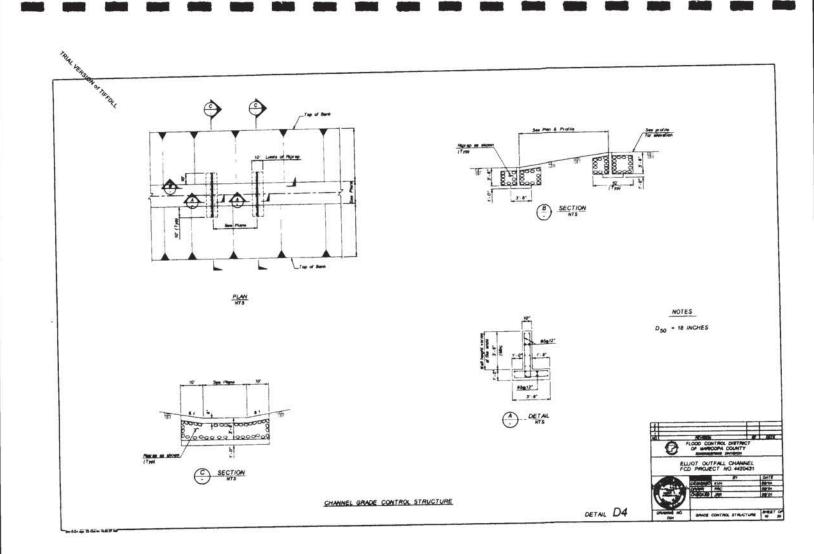

FD BC IN HH S EBOX Rd & Example Rd EL 1403.00

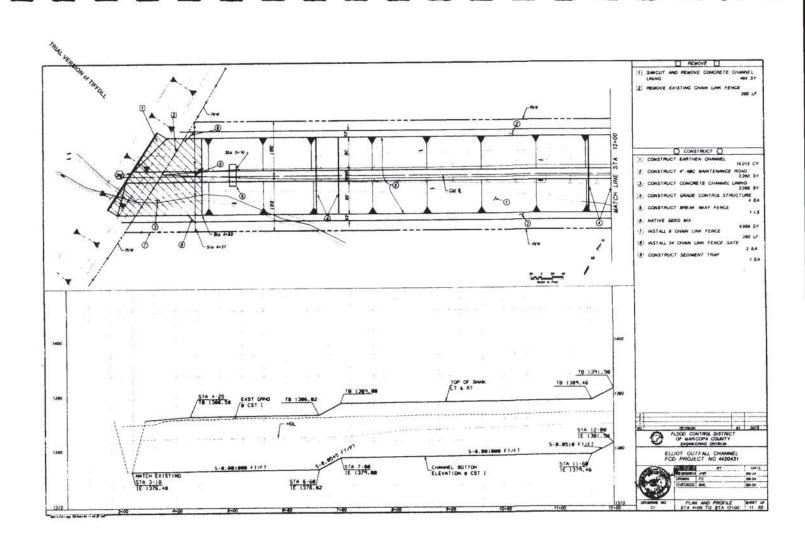
Design Q = 1,100 CFS

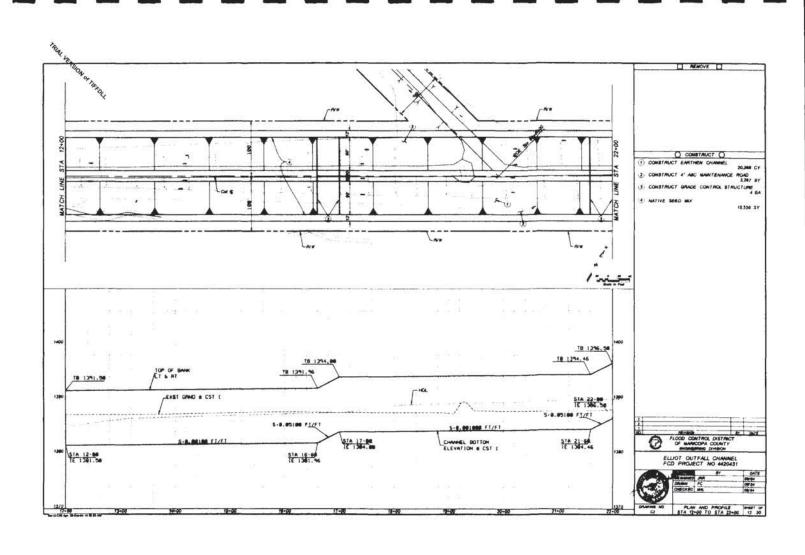


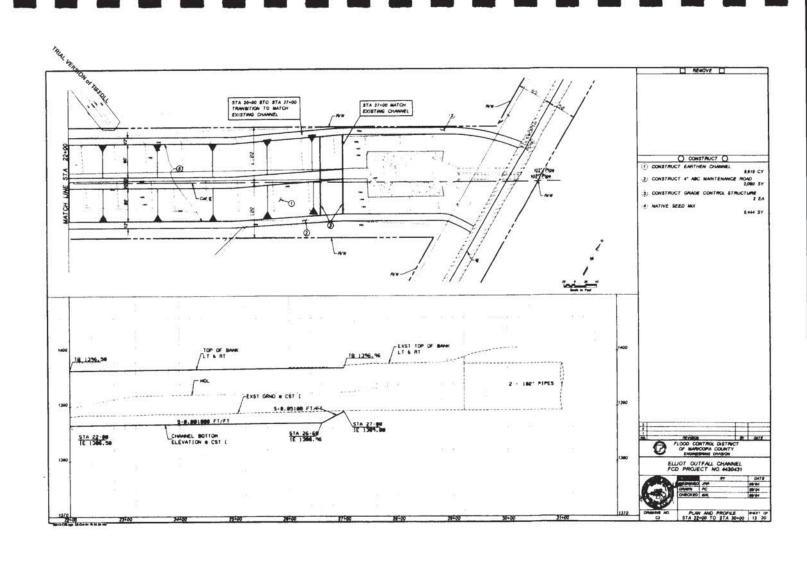


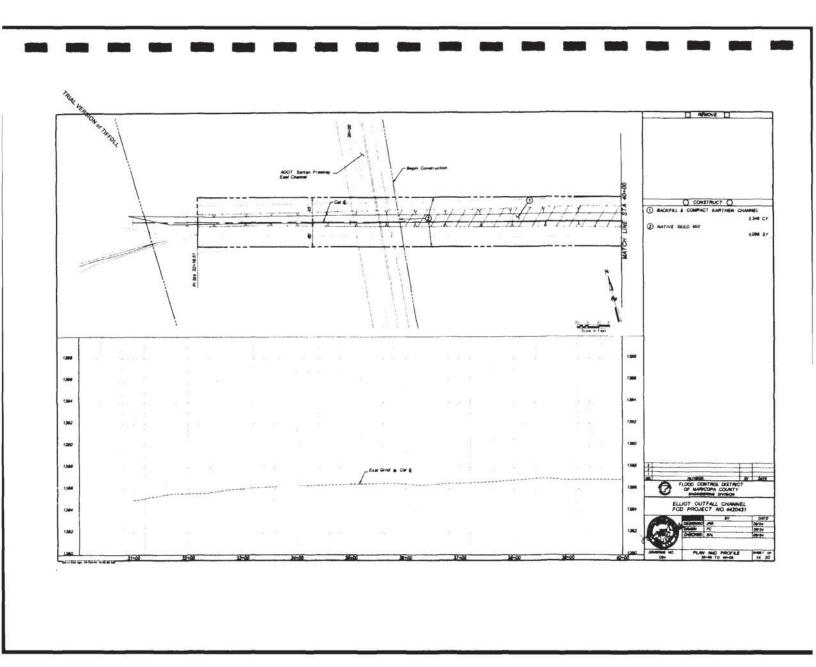


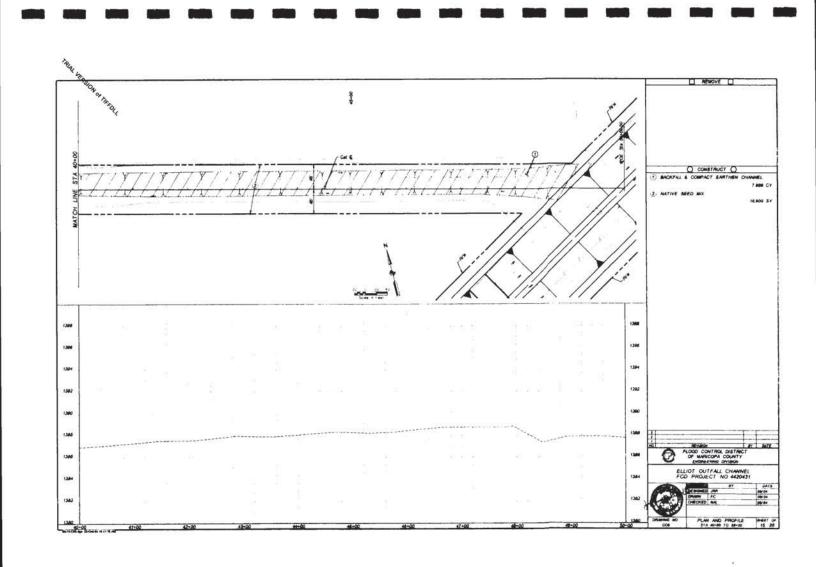


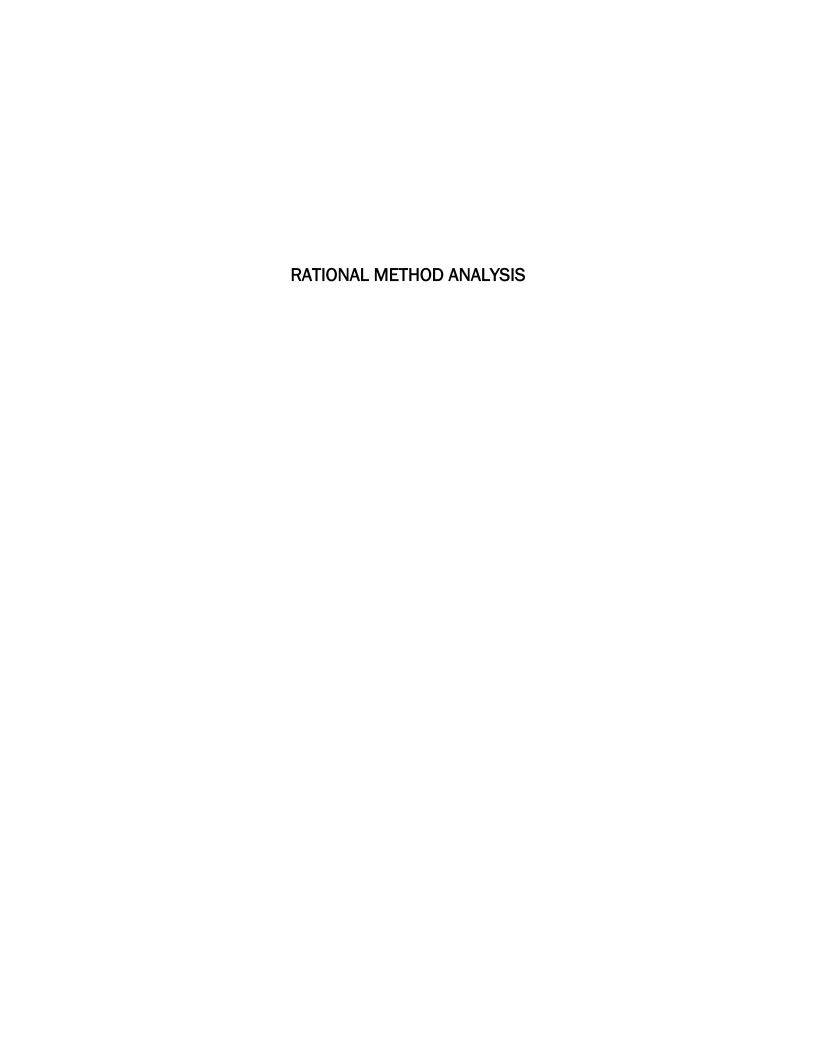

-	Cox os Affred I			93-94V)	-			Y SUI		RY				- TTT				_					Î
-	· · · · · · · · · · · · · · · · · · ·		U			BLL	D1 001	PALL UN	West		q	HEET N	MARCO	ic .								_	
E .	DESCRIPTION	UNIT	C1	C2		C4	C5				3						1001410				-	QTY	
1-1	Charmel PRI Charmel Ecopysiste ARC Ministratures, Road (4") 8" Charle Link Paree	ÇY	-	-		2,340	7,500															10,236 26,200 6,607	1
-4	Charriel Scientifica	CY	10,813 2,300 300	20,200	4,019	-	-			-		-		-	-	-		-	-			24,200	10
1	8' Chain Link Fance	UF	200	200	3								-		_							200	
	The Culture Charles Make	EA		0.00	2															110		200	1
0-3	6' Brook Awar Forge	1.8	1											_		_						1	
-3	Profine Bred Mr. Constate Grade Control Structure	SY EA	3,300	10,566	2	4,096	16,800		-	-			-	-	-	-	-	_	-		-	B2.894	
. 0	Congreto Business True	EA	1	1	-		1 - 1						2000	-	-	-		3.33	-			10	
17	Composite Change Links	87	2,085																			2,006	
		-			0	-		-											-			Subsection Services	S .
		-		1						-	-					-	-		-	_			a de la companya de l
		1		1												-					7		8
																		2			- 1		
-			1	-							-			-									5 2
-		-	1	-			-	-	-	-	-	-		-			-	-	-	-		-	E.
													-			-					2000		
											5-13											2.2	
		_		-									-	0.00									10
-		-	-	-			-	-	-					-	-	-		-	-	-	-	_	•
			-	1	-	-			-	-				-		-	-	D. 3					
							- 7				77						2 10	5-1-6					
				-									-					3	-				
-		_	-	-	-	-	-	-	-	_	-						-	-		-		-	4
		-				-	-	-	-	-			-		_					_	-	-	i i
										100	V 8		7		4.15	-		8 1		11			
_						15-5-12							- 0						- 10		-		
		-	-	-		-	_	-	_	_		_		-		-		-	-	_	24	-	
-			1	-			-	-	-	-		-		-	-	-							f (1)
													100										
		-		-		-	-	-	-	_				-	-		-		-		-	-	lik
		1		-					-	-								-			-	-	
				5-56		1		-			61.		2114			/							
_			-	-	-					_		-	_					-	-				
		-							-	-	-	-	-				-		-		-	-	8
						The second										1		S				1	
																		3		- 2.6			No.
-		-		-			-		-	-		-											
-		-	-	-	-		-	-	-		-	-	-	-	-	-		-		-	-	-	OI.
					-	1									-	-	-			-	-		1
					5 - 3						1 100		0.00								55.5		
-	11 - 11					187-1		-		-		-						_				-	FLOOD CONTROL DISTANCT OF MARCOPA COUNTY
-		-						-	-	-	-	-		-		-	-	-					OF MARCOPA COUNTY
				-		-					-		-		_		-	-		-		-	ELLIOT OUTFALL CHANNEL
																			- 10	-			FCD PROJECT NO 4420431
			-				-																
		-				-	-	-					-	-					-	-			CONTRACT DESCRIPTION AND
-		-	-	-	-					-	-		-	-		-	-	-	-	-	-	-	Oseculo un
_			+	-	_	-	_	-		-				- 0					-				NAS LANGE DISCUSSION DE











APPENDIX C PRELIMINARY HYDROLOGIC CALCULATIONS

DRAINAGE SUBAREA SUMMARY TABLE

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

					L	and Use Category	1													
Drainage Subarea ID(s)	Concentration Point	Medium Density Residential	Medium/High Density Residential	Urban Density Residential	Urban/ Mixed Use	Technology/ Mixed Use	Commercial	Office	Park/Open Space	Undeveloped Desert	Total Area	Total Area	Total Area	Length of Longest Flowpath	Length of Longest Flowpath	Top Elevation	Bottom Elevation	Change in Elevation	Slope	Slope
		[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ac]	[sq mi]	[ft]	[ml]	[ft]	[ft]	[ft]	[ft/ft]	[ft/ml]
OFFSITE DRAINAGE AREAS																				
OFF-1.1	C-1.1	0	0	0	0	0	0	0	0	1,656,641	1,656,641	38.0	0.0594	2,627	0.498	1,394	1,379	15	0.006	30
OFF-1.2	C-1.2	0	0	0	0	0	0	0	0	2,832,596	2,832,596	65.0	0.102	3,644	0.690	1,397	1,379	18	0.005	26
OFF-1.3	C-1.3	0	0	0	0	0	0	0	0	2,612,001	2,612,001	60.0	0.094	4,978	0.943	1,394	1,376	18	0.004	19
OFF-2	C-1.2	0	0	0	0	0	0	0	0	522,617	522,617	12.0	0.019	4,286	0.812	1,379	1,371	8	0.002	10
OFF-1.1+OFF-1.2+OFF-2	C-1.2	0	0	0	0	0	0	0	0	5,063,316	5,063,316	116.2	0.1816	4,567	0.865	1,394	1,371	23	0.005	27
OFF-1.1+OFF-1.2+OFF-1.3	C-1.3	0	0	0	0	0	0	0	0	7,112,847	7,112,847	163.3	0.2551	4,286	0.812	1,394	1,376	18	0.004	22
OFF-1.1+OFF-1.2+OFF-1.3+OFF-2	C-1.4/CU-1.4	0	0	0	0	0	0	0	0	7,676,152	7,676,152	176.2	0.2753	4,286	0.812	1,394	1,376	18	0.004	22
OFF-3	C-3	0	0	0	0	0	0	0	0	3,257,283	3,257,283	74.8	0.117	4,978	0.943	1,388	1,374	14	0.003	15
OFF-4	C-4.1	0	0	0	0	0	0	0	0	86,481	86,481	2.0	0.003	436	0.083	1,378	1,374	4	0.009	48
OFF-5	CP-4	0	0	0	0	0	0	0	0	645,894	645,894	14.8	0.023	1,295	0.245	1,366	1,364	2	0.002	8
OFF-1.1-INT	CU-1.2	0	0	0	0	0	0	0	0	1,457,821	1,457,821	33.5	0.052	2,077	0.393	1,379	1,368	11	0.005	28
FF-1.1+OFF-1.2+OFF-1.3+OFF-1.1-IN	C-1.2-INT	0	0	0	0	0	0	0	0	8,570,669	8,570,669	196.8	0.307	5,445	1.031	1,397	1,368	29	0.005	28
OFF-2-INT	C-2-INT	0	0	0	0	0	0	0	0	6,771,436	6,771,436	155.5	0.243	4,702	0.890	1,387	1,374	13	0.003	15
OFF-4-INT	C-4-INT	0	0	0	0	0	0	0	0	1,180,104	1,180,104	27.1	0.042	2,120	0.401	1,374	1,370	4	0.002	10
OFF-6-INT	C-3-INT	0	0	0	0	0	0	0	0	2,611,350	2,611,350	59.9	0.094	4,978	0.943	1,381	1,368	13	0.003	14
OFF-3+OFF-6-INT	C-3-INT/CU-3-INT	0	0	0	0	0	0	0	0	5,868,633	5,868,633	134.7	0.211	5,032	0.953	1,388	1,368	20	0.004	21

WEIGHTED RUNOFF COEFFICIENT CALCULATIONS

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

Land Use ⁽¹⁾	Land Use Code	C Coefficient
Medium Density Residential	Α	0.75
Medium/High Density Residential	В	0.80
Urban Density Residential	С	0.85
Urban/ Mixed Use ⁽²⁾	D	0.80
Technology/ Mixed Use	E	0.90
Commercial	F	0.90
Office	G	0.90
Park/Open Space	Р	0.65
Undeveloped Desert		0.50

NOTES:

- (1) From Table 6.3 of the FCDMC Drainage Policies and Standards, Arizona (August, 2018)
- (2) Assumes average of Urban and Commercial density coefficients

						Subare	ea Surface Types 8	Areas					
Drainage Subarea ID(s)	Concentration Point	Medium Density Residential	Medium/High Density Residential	Urban Density Residential	Urban/ Mixed Use	Technology/ Mixed Use	Commercial	Office	Park/Open Space	Undeveloped Desert	Total	Total	Weighted C Coefficient
		[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ac]	C _w - 100 Year
OFFSITE DRAINAGE AREAS													
OFF-1.1	C-1.1	0	0	0	0	0	0	0	0	1,656,641	1,656,641	38.0	0.50
0FF-1.2	C-1.2	0	0	0	0	0	0	0	0	2,832,596	2,832,596	65.0	0.50
OFF-1.3	C-1.3	0	0	0	0	0	0	0	0	2,612,001	2,612,001	60.0	0.50
OFF-2	C-1.2	0	0	0	0	0	0	0	0	522,617	522,617	12.0	0.50
OFF-1.1+0FF-1.2+0FF-2	C-1.2	0	0	0	0	0	0	0	0	5,063,316	5,063,316	116.2	0.50
OFF-1.1+0FF-1.2+0FF-1.3	C-1.3	0	0	0	0	0	0	0	0	7,112,847	7,112,847	163.3	0.50
OFF-1.1+OFF-1.2+OFF-1.3+OFF-2	C-1.4/CU-1.4	0	0	0	0	0	0	0	0	7,676,152	7,676,152	176.2	0.50
OFF-3	C-3	0	0	0	0	0	0	0	0	3,257,283	3,257,283	74.8	0.50
OFF-4	C-4.1	0	0	0	0	0	0	0	0	86,481	86,481	2.0	0.50
OFF-5	CP-4	0	0	0	0	0	0	0	0	645,894	645,894	14.8	0.50
OFF-1.1-INT	CU-1.2	0	0	0	0	0	0	0	0	1,457,821	1,457,821	33.5	0.50
OFF-1.1+OFF-1.2+OFF-1.3+OFF-1.1-INT	C-1.2-INT	0	0	0	0	0	0	0	0	8,570,669	8,570,669	196.8	0.50
OFF-2-INT	C-2-INT	0	0	0	0	0	0	0	0	6,771,436	6,771,436	155.5	0.50
OFF-4-INT	C-4-INT	0	0	0	0	0	0	0	0	1,180,104	1,180,104	27.1	0.50
OFF-6-INT	C-3-INT	0	0	0	0	0	0	0	0	2,611,350	2,611,350	59.9	0.50
OFF-3+OFF-6-INT	C-3-INT/CU-3-INT	0	0	0	0	0	0	0	0	5,868,633	5,868,633	134.7	0.50

TIME OF CONCENTRATION CALCULATIONS

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

										100	-year storr	m
Drainage Subarea ID(s)	Concentration Point	Length of Longest Flowpath	Area	Slope	Adjusted Slope	m _{welghted}	b _{weighted}	Κ _Þ	11.4 x L ^{0.5} x K _b ^{0.52} x S ^{-0.31}	Assumed T _c	i ₁₀₀	T _c
		[mi]	[ac]	[ft/mi]	[ft/mi]					[min]	[in/hr]	[min]
Offsite Drainage Sub-Basins												
OFF-1.1	C-1.1	0.498	38.0	30	30	-0.01375	0.08000	0.0516	0.599	22.4	3.47	22.4
OFF-1.2	C-1.2	0.690	65.0	26	26	-0.01375	0.08000	0.0496	0.723	27.5	3.31	27.5
OFF-1.3	C-1.3	0.943	60.0	19	19	-0.01375	0.08000	0.0542	0.975	38.5	3.02	38.5
OFF-2	C-1.2	0.812	12.0	10	10	-0.01375	0.08000	0.0759	1.322	58.8	2.20	58.8
OFF-1.1+OFF-1.2+OFF-2	C-1.2	0.865	116.2	27	27	-0.01375	0.08000	0.0590	0.881	33.9	3.22	33.9
OFF-1.1+OFF-1.2+OFF-1.3	C-1.3	0.812	163.3	22	22	-0.01375	0.08000	0.0485	0.814	31.3	3.22	31.3
0FF-1.1+0FF-1.2+0FF-1.3+0FF-2	C-1.4/CU-1.4	0.812	176.2	22	22	-0.01375	0.08000	0.0499	0.826	31.8	3.22	31.8
OFF-3	C-3	0.943	74.8	15	15	-0.01375	0.08000	0.0542	1.054	42.7	2.81	42.7
OFF-4	C-4.1	0.083	2.0	48	48	-0.01375	0.08000	0.0759	0.257	10.0	5.77	7.9
OFF-5	C-4.2	0.245	14.8	8	8	-0.01375	0.08000	0.0590	0.676	25.6	3.37	25.6
OFF-1.1-INT	C-4.2	0.393	33.5	28	28	-0.01375	0.08000	0.0590	0.585	21.8	3.50	21.8
OFF-1.1+OFF-1.2+OFF-1.3+OFF-1.1-INT	C-4.3	1.031	196.8	28	28	-0.01375	0.08000	0.0485	0.853	32.8	3.22	32.8
OFF-2-INT	C-4.3	0.890	155.5	15	15	-0.01375	0.08000	0.0499	0.985	38.9	3.02	38.9
OFF-4-INT	C-4.4	0.401	27.1	10	10	-0.01375	0.08000	0.0603	0.822	31.6	3.22	31.6
OFF-6-INT	C-4.5	0.943	59.9	14	14	-0.01375	0.08000	0.0556	1.092	44.2	2.81	44.2
OFF-3+OFF-6-INT	C-4.6	0.953	134.7	21	21	-0.01375	0.08000	0.0507	0.919	36.3	3.02	36.3

From Equation 3.2 of the Flood Control District of Maricopa County (FCDMC)

Drainage Design Manual for Maricopa County, Arizona, Hydrology (December, 2018)

$$T_c = 11.4 * L^{0.5} * K_b^{0.52} * S^{-0.31} * i^{-0.38}$$

Where:

 T_c = The time of concentration in hours

L = The length of the longest flow path in miles

 K_b = The watershed resitance coefficient (Kb = m * log(A) + b)

S = The watercourse slope in ft/ mi

i = The rainfall intensity in in/ hr

m & b = Equation parameter from Table 2-2: Watershed Resistance Coefficients

A = Drainage area in acres

Peak Flow Rate Calculations

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

					100-year storm	
Drainage Subarea ID(s)	Concentration Point	Slope [ft/ft]	Total Area	Weighted C	Rainfall Intensity	Flow Rate ⁽¹⁾ [cfs]
Offsite Drainage Sub-Basins		[IO1G	[ac]		funtul	[ci3]
0FF-1.1	C-1.1	0.0057	38.0	0.50	3.47	66
0FF-1.2	C-1.2	0.0049	65.0	0.50	3.31	108
0FF-1.3	C-1.3	0.0036	60.0	0.50	3.02	90
OFF-2	C-1.2	0.0019	12.0	0.50	2.20	13
OFF-1.1+0FF-1.2+0FF-2	C-1.2	0.0050	116.2	0.50	3.22	187
OFF-1.1+0FF-1.2+0FF-1.3	C-1.3	0.0042	163.3	0.50	3.22	263
OFF-1.1+OFF-1.2+OFF-1.3+OFF-2	C-1.4/CU-1.4	0.0042	176.2	0.50	3.22	284
OFF-3	C-3	0.0028	74.8	0.50	2.81	105
OFF-4	C-4.1	0.0092	2.0	0.50	5.77	6
OFF-5	C-4.2	0.0015	14.8	0.50	3.37	25
OFF-1.1-INT	CU-1.2	0.0053	33.5	0.50	3.50	59
OFF-1.1+OFF-1.2+OFF-1.3+OFF-1.1-INT	C-1.2-INT	0.0053	196.8	0.50	3.22	317
OFF-2-INT	C-2-INT	0.0028	155.5	0.50	3.02	234
OFF-4-INT	C-4-INT	0.0019	27.1	0.50	3.22	44
OFF-6-INT	C-3-INT	0.0026	59.9	0.50	2.81	84
OFF-3+OFF-6-INT	C-3-INT/CU-3-INT	0.0040	134.7	0.50	3.02	203

NOTES:

(1) The flow rate values shown were calculated using the following process:

From Equation 3.1 of the Flood Control District of Maricopa County (FCDMC) Drainage Design Manual for Maricopa County, Arizona, Hydrology (December, 2018)

Q = CiA

Where

Q = The the peak discharge (cfs) from a given area.

C = A coefficient relating the runoff to rainfall.

i= The average rainfall intensity (inches/ hour), lasting for a T_c

 T_c = The time of concentration (hours)

A= The drainage area (acres)

In order to solve for the flow rate (Q), the Rational Method equation shown above was used to calculate the peak discharge at each concentration point.

DDF/IDF TABLES

Project: Hawes Crossing

Prepared by: BB
Date: Oct, 2019

	Rainfall Depth (inches)											
Frequency		Duration										
(years)	5-min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr	12-hr	24-hr		
2	0.25	0.37	0.46	0.62	0.77	0.87	0.92	1.10	1.23	1.50		
5	0.33	0.51	0.63	0.84	1.04	1.16	1.21	1.40	1.56	1.93		
10	0.40	0.61	0.75	1.01	1.25	1.39	1.44	1.64	1.81	2.27		
25	0.49	0.75	0.92	1.24	1.54	1.69	1.76	1.98	2.16	2.73		
50	0.56	0.85	1.06	1.42	1.76	1.93	2.01	2.24	2.42	3.10		
100	0.63	0.96	1.19	1.61	1.99	2.17	2.28	2.51	2.69	3.48		

¹⁾ Rainfall depths are referneced from NOAA Atlas 14 Precipitation Frequency Data Server. (http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=az)

	Rainfall Intensity (inche	es/hour)
Duration	Frequen	cy (years)
Duration	10	100
5-min	2.94	7.58
10-min	2.24	5.77
15-min	1.85	4.76
30-min	1.25	3.22
1-hr	0.77	1.99
2-hr	0.44	1.09
3-hr	0.31	0.76
6-hr	0.18	0.42
12-hr	0.10	0.22
24-hr	0.06	0.15

¹⁾ intensity = Rainfall Depth / Duration

IDF CURVE TABLE

Project: Hawes Crossing

Prepared by: BB Date: Dec, 2017

	10-year storm	100-year storm
Assumed Tc	1	I
[min]	[in/hr]	[in/hr]
10.000	2.24	5.77
10.125	2.23	5.75
10.250	2.22	5.72
10.375	2.21	5.70
10.500	2.20	5.67
10.625	2.19	5.65
10.750	2.18	5.62
10.875	2.17	5.59
11.000	2.16	5.57
11.125	2.15	5.54
11.250	2.14	5.52
11.375	2.13	5.49
11.500	2.12	5.47
11.625	2.11	5.44
11.750	2.10	5.42
11.875	2.09	5.39
12.000	2.08	5.37
12.125	2.07	5.34
12.250	2.06	5.32
12.375	2.05	5.29
12.500	2.05	5.27
12.625	2.04	5.24
12.750	2.03	5.22
12.875	2.02	5.19
13.000	2.01	5.16
13.125	2.00	5.14
13.250	1.99	5.11
13.375	1.98	5.09
13.500	1.97	5.06
13.625	1.96	5.04
13.750	1.95	5.01
13.875	1.94	4.99
14.000	1.93	4.96
14.125	1.92	4.94
14.250	1.91	4.91
14.375	1.90	4.89
14.500	1.89	4.86
14.625	1.88	4.84
14.750	1.87	4.81
14.875	1.86	4.79
15.000	1.85	4.76
15.125	1.84	4.73

	10-year storm	100-year storm
Assumed Tc	1	l
[min]	[in/hr]	[in/hr]
15.250	1.83	4.70
15.375	1.82	4.67
15.500	1.80	4.64
15.625	1.79	4.61
15.750	1.78	4.58
15.875	1.77	4.54
16.000	1.76	4.51
16.125	1.74	4.48
16.250	1.73	4.45
16.375	1.72	4.42
16.500	1.71	4.39
16.625	1.69	4.36
16.750	1.68	4.33
16.875	1.67	4.30
17.000	1.66	4.27
17.125	1.65	4.24
17.250	1.63	4.21
17.375	1.62	4.17
17.500	1.61	4.14
17.625	1.60	4.11
17.750	1.59	4.08
17.875	1.57	4.05
18.000	1.56	4.02
18.125	1.55	3.99
18.250	1.54	3.96
18.375	1.52	3.93
18.500	1.51	3.90
18.625	1.50	3.87
18.750	1.49	3.84
18.875	1.48	3.81
19.000	1.46	3.77
19.125	1.45	3.74
19.250	1.44	3.71
19.375	1.43	3.68
19.500	1.42	3.65
19.625	1.40	3.62
19.750	1.39	3.59
19.875	1.38	3.56
20.000	1.37	3.53
21.000	1.36	3.50
22.000	1.34	3.47
23.000	1.33	3.44
24.000	1.32	3.40
25.000	1.31	3.37
26.000	1.29	3.34
27.000	1.28	3.31
28.000	1.27	3.28
29.000	1.26	3.25

	10-year storm	100-year storm
Assumed Tc	I	I
[min]	[in/hr]	[in/hr]
30.000	1.25	3.22
35.000	1.17	3.02
40.000	1.09	2.81
45.000	1.01	2.61
50.000	0.93	2.40
55.000	0.85	2.20
60.000	0.77	1.99
90.000	0.60	1.54
120.000	0.44	1.09
150.000	0.37	0.92
180.000	0.31	0.76
270.000	0.25	0.59
360.000	0.18	0.42
540.000	0.14	0.32
720.000	0.10	0.22
1080.000	0.08	0.18
1440.000	0.06	0.15

NOAA Atlas 14, Volume 1, Version 5 Location name: Mesa, Arizona, USA* Latitude: 33.3499°, Longitude: -111.6469° Elevation: 1386.53 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

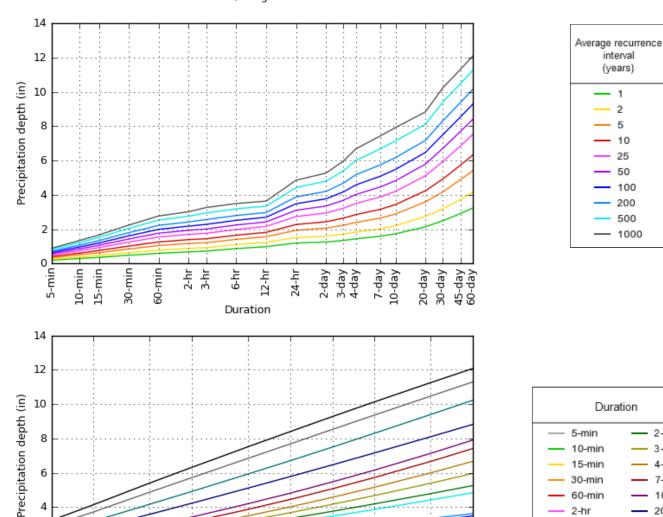
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	S-based p					e interval (v				
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.188	0.245	0.332	0.399	0.490	0.560	0.632	0.706	0.805	0.880
		,	,		,			(0.549-0.850)	, ,	,
10-min	0.286 (0.240-0.351)	0.373 (0.315-0.459)	0.505 (0.422-0.619)	0.607 (0.504-0.740)	0.745 (0.608-0.905)	0.853 (0.687-1.03)	0.962 (0.761-1.16)	1.07 (0.835-1.29)	1.23 (0.927-1.48)	1.34 (0.993-1.62
15-min	0.354 (0.297-0.435)	0.463 (0.390-0.569)	0.626 (0.523-0.767)	0.752 (0.624-0.917)	0.924 (0.754-1.12)	1.06 (0.852-1.28)	1.19 (0.944-1.44)	1.33 (1.03-1.60)	1.52 (1.15-1.83)	1.66 (1.23-2.00
30-min	0.477 (0.401-0.586)	0.623 (0.525-0.767)	0.844 (0.705-1.03)	1.01 (0.841-1.24)	1.24 (1.02-1.51)	1.42 (1.15-1.72)	1.61 (1.27-1.94)	1.79 (1.39-2.16)	2.04 (1.55-2.46)	2.24 (1.66-2.70
60-min	0.591 (0.496-0.725)	0.771 (0.650-0.949)	1.04 (0.872-1.28)	1.25 (1.04-1.53)	1.54 (1.26-1.87)	1.76 (1.42-2.13)	1.99 (1.57-2.40)	2.22 (1.73-2.67)	2.53 (1.92-3.05)	2.77 (2.05-3.34
2-hr	0.675 (0.570-0.811)	0.874 (0.739-1.05)	1.16 (0.979-1.40)	1.39 (1.16-1.67)	1.69 (1.39-2.02)	1.93 (1.56-2.30)	2.17 (1.73-2.59)	2.42 (1.89-2.87)	2.75 (2.10-3.27)	3.01 (2.25-3.60)
3-hr	0.719 (0.607-0.875)	0.921 (0.780-1.13)	1.21 (1.02-1.47)	1.44 (1.20-1.74)	1.76 (1.44-2.11)	2.01 (1.62-2.41)	2.28 (1.81-2.73)	2.56 (1.99-3.06)	2.94 (2.23-3.52)	3.26 (2.40-3.90)
6-hr	0.864 (0.747-1.02)	1.10 (0.947-1.29)	1.40 (1.21-1.65)	1.64 (1.40-1.93)	1.98 (1.67-2.31)	2.24 (1.86-2.60)	2.51 (2.05-2.92)	2.79 (2.24-3.25)	3.18 (2.48-3.70)	3.49 (2.66-4.07
12-hr	0.979 (0.858-1.12)	1.23 (1.08-1.42)	1.56 (1.36-1.79)	1.81 (1.57-2.07)	2.16 (1.85-2.46)	2.42 (2.06-2.75)	2.69 (2.25-3.07)	2.97 (2.44-3.38)	3.34 (2.69-3.83)	3.63 (2.86-4.19
24-hr	1.19 (1.07-1.34)	1.50 (1.35-1.69)	1.93 (1.72-2.16)	2.27 (2.02-2.54)	2.73 (2.41-3.05)	3.10 (2.71-3.45)	3.48 (3.02-3.88)	3.87 (3.33-4.33)	4.42 (3.73-4.96)	4.85 (4.03-5.47
2-day	1.25 (1.12-1.41)	1.59 (1.43-1.79)	2.06 (1.84-2.31)	2.43 (2.16-2.72)	2.94 (2.60-3.29)	3.34 (2.93-3.73)	3.76 (3.27-4.21)	4.20 (3.60-4.70)	4.79 (4.04-5.39)	5.26 (4.38-5.95
3-day	1.34 (1.21-1.50)	1.71 (1.54-1.90)	2.22 (2.01-2.47)	2.64 (2.37-2.93)	3.22 (2.87-3.57)	3.68 (3.26-4.07)	4.17 (3.66-4.62)	4.68 (4.07-5.20)	5.40 (4.62-6.01)	5.97 (5.05-6.68
4-day	1.43 (1.30-1.58)	1.83 (1.66-2.02)	2.39 (2.17-2.64)	2.85 (2.57-3.14)	3.49 (3.14-3.85)	4.02 (3.59-4.42)	4.58 (4.06-5.04)	5.17 (4.54-5.70)	6.00 (5.19-6.64)	6.67 (5.72-7.41
7-day	1.58 (1.44-1.75)	2.01 (1.83-2.23)	2.64 (2.39-2.91)	3.15 (2.85-3.47)	3.87 (3.48-4.26)	4.45 (3.98-4.90)	5.07 (4.50-5.59)	5.73 (5.04-6.32)	6.67 (5.77-7.37)	7.42 (6.35-8.24
10-day	1.72 (1.57-1.90)	2.20 (2.00-2.42)	2.88 (2.62-3.17)	3.43 (3.11-3.76)	4.20 (3.79-4.60)	4.82 (4.32-5.28)	5.47 (4.87-6.01)	6.16 (5.44-6.77)	7.14 (6.21-7.87)	7.91 (6.82-8.75
20-day	2.13 (1.93-2.36)	2.74 (2.48-3.02)	3.59 (3.25-3.95)	4.23 (3.83-4.66)	5.11 (4.60-5.62)	5.78 (5.18-6.37)	6.47 (5.77-7.13)	7.16 (6.35-7.91)	8.10 (7.12-8.98)	8.82 (7.69-9.81
30-day	2.49 (2.27-2.73)	3.19 (2.90-3.50)	4.17 (3.79-4.57)	4.92 (4.47-5.39)	5.93 (5.36-6.49)	6.71 (6.04-7.34)	7.50 (6.72-8.23)	8.31 (7.40-9.13)	9.40 (8.28-10.4)	10.2 (8.95-11.3
45-day	2.91 (2.64-3.20)	3.73 (3.39-4.10)	4.87 (4.43-5.36)	5.72 (5.19-6.29)	6.84 (6.18-7.52)	7.68 (6.92-8.45)	8.53 (7.65-9.38)	9.37 (8.35-10.3)	10.5 (9.25-11.6)	11.3 (9.92-12.5
60-day	3.23 (2.95-3.54)	4.15 (3.78-4.55)	5.40 (4.92-5.93)	6.32 (5.74-6.94)	7.52 (6.81-8.24)	8.40 (7.58-9.22)	9.28 (8.35-10.2)	10.1 (9.07-11.2)	11.3 (10.0-12.4)	12.1 (10.7-13.4

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.3499°, Longitude: -111.6469°

NOAA Atlas 14, Volume 1, Version 5

5

2

Created (GMT): Tue Sep 26 21:24:26 2017

500

1000

Back to Top

100

200

Maps & aerials

Small scale terrain

25

Average recurrence interval (years)

50

2

10 25

50 100

200 500

- 1000

2-day

3-day

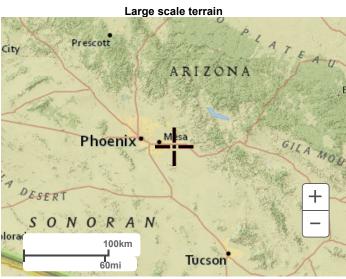
4-day

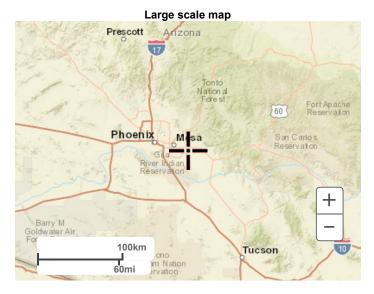
7-day

10-day 20-day

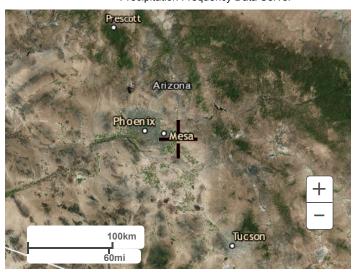
30-day 45-day

60-day


60-min


2-hr 3-hr

6-hr


12-hr 24-hr

Large scale aerial


Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

APPENDIX D PRELIMINARY HYDRAULIC CALCULATIONS

CHANNEL PARAMETER SUMMARY

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

Channel ID	Model Q ⁽¹⁾	Side Slopes	Minimum Channel Bottom Width	Channel Top Width	Total Channel Depth	Manning's n ⁽²⁾	Slope	Velocity ⁽³⁾	Water Surface Depth ⁽⁴⁾	Freeboard Provided ⁽⁵⁾	Top Width of Flow	Cross- Sectional Area of Flow	Froude Number ^(6,7)
	[ft ³ /sec]	[H:V]	[ft]	[ft]	[ft]		[%]	[ft/sec]	[ft]	[ft]	[ft]	[ft²]	
C-1.1	66	4:1	9	29	2.50	0.032	0.40	2.99	1.48	1.02	20.84	22.08	0.51
C-1.2	187	4:1	9	37	3.50	0.032	0.40	3.99	2.48	1.02	28.84	46.92	0.55
C-1.3	263	4:1	10	42	4.00	0.032	0.40	4.36	2.83	1.17	32.64	60.34	0.57
C-1.4	284	4:1	10	42	4.00	0.032	0.40	4.44	2.94	1.06	33.52	63.97	0.57
C-3	105	4:1	8	32	3.00	0.032	0.40	3.43	1.94	1.06	23.52	30.57	0.53
C-4.1	6	4:1	-	16	2.00	0.032	0.40	1.70	0.94	1.06	7.52	3.53	0.44
C-4.2	111	4:1	8	32	3.00	0.032	0.40	3.49	1.99	1.01	23.92	31.76	0.53
C-5	1,100	4:1	65	97	4.00	0.032	0.33	4.76	3.00	1.00	89.00	231.00	0.52
C-1.2-INT	317	4:1	12	44	4.00	0.032	0.40	4.54	2.94	1.06	35.52	69.85	0.57
C-2-INT	234	4:1	7	39	4.00	0.032	0.40	4.27	2.93	1.07	30.44	54.85	0.56
C-3-INT	203	4:1	6	38	4.00	0.032	0.40	4.26	2.91	1.09	30.28	54.24	0.56
C4-INT	47	4:1	6	26	2.50	0.032	0.40	2.57	1.45	1.05	17.60	17.11	0.46

NOTES:

- (1) Model Q is peak flow determined in DDMSW/HEC-1.
- (2) Channels are currently modeled as having a composite channel lining that may consist of desert landscaping, turf, riprap or a combination thereof.
- (3) Maximum allowable velocity of 5ft/sec from Table 6.2 of the Drainage Design Manual of Maricopa County, Hydraulics: Rational Method, Chapter 3 (December, 2018).
- (4) Maximum flow depth of 3 ft from Section 1.4.3 of the Drainage Design Manual of Maricopa County, Hydraulics: Safety, Chapter 1 (December, 2018).
- (5) Minimum 1 ft of freeboard required from Section 6.5.4 of the Drainage Design Manual of Maricopa County, Hydraulics: Feeboard, Chapter 6 (December, 2018).
- (6) Fr=V/(g*D)^{0.5} where V=velocity, g=32.2 ft/s², and D=(Cross-sectional area)/(Top width)
- (7) Fr<0.86 indicates subcritical flow and Fr>0.86 indicates supercritical flow

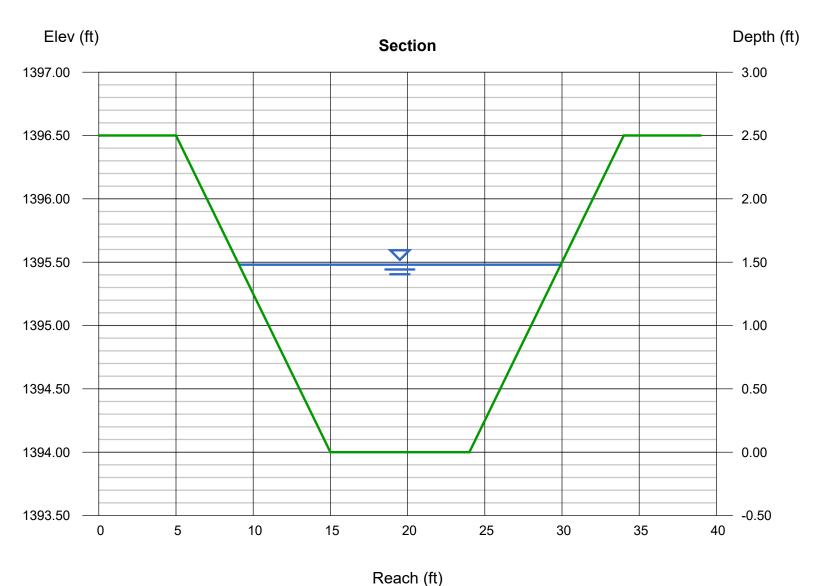
Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-1.1 (TW=29FT)

Trapezoida	al
------------	----


Bottom Width (ft) = 9.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 2.50
Invert Elev (ft) = 1394.00
Slope (%) = 0.40
N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 66.00

Highlighted

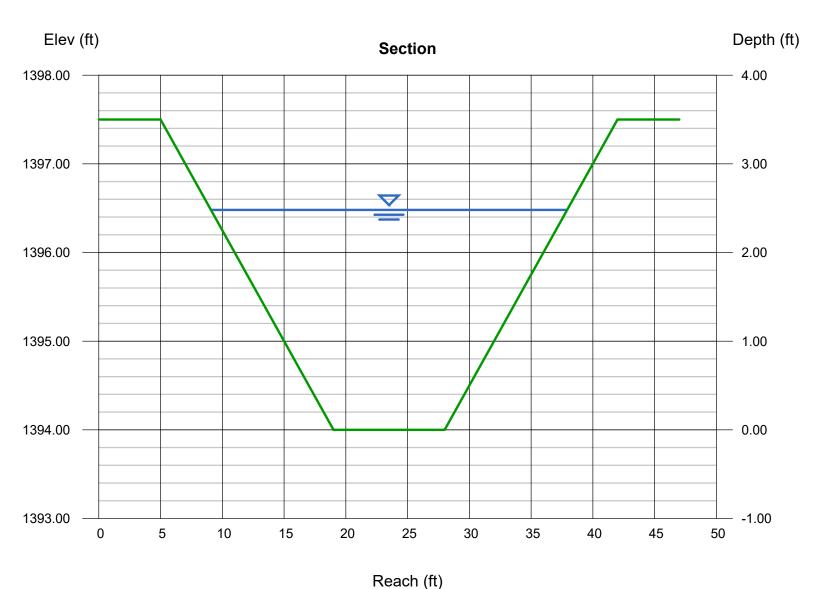
Depth (ft) = 1.48Q (cfs) = 66.00Area (sqft) = 22.08Velocity (ft/s) = 2.99Wetted Perim (ft) = 21.20Crit Depth, Yc (ft) = 1.02Top Width (ft) = 20.84EGL (ft) = 1.62

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-1.2 (TW=37FT)


Trapezoidal

Bottom Width (ft) = 9.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 3.50
Invert Elev (ft) = 1394.00
Slope (%) = 0.40
N-Value = 0.032

Calculations

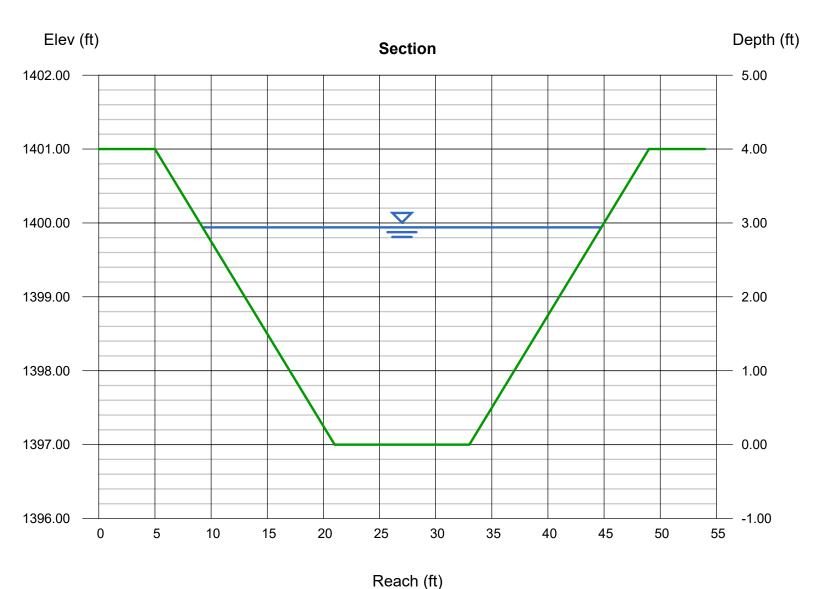
Compute by: Known Q Known Q (cfs) = 187.00 Highlighted

Depth (ft) = 2.48Q (cfs) = 187.00Area (sqft) = 46.92Velocity (ft/s) = 3.99Wetted Perim (ft) = 29.45Crit Depth, Yc (ft) = 1.82Top Width (ft) = 28.84EGL (ft) = 2.73

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-1.2-INT (TW=44FT) INTERIM


Trapezoidal

Bottom Width (ft) = 12.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 4.00 Invert Elev (ft) = 1397.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

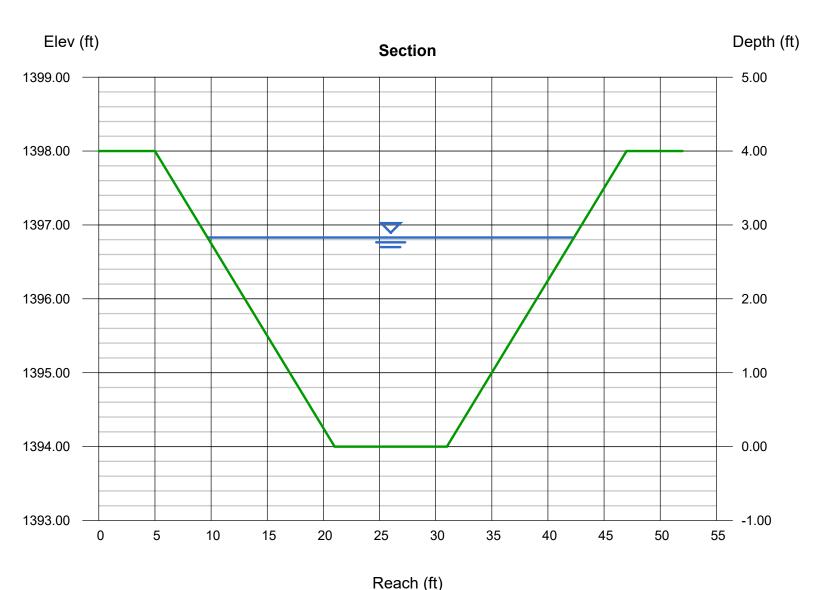
Compute by: Known Q Known Q (cfs) = 317.00 Highlighted

= 2.94Depth (ft) Q (cfs) = 317.00Area (sqft) = 69.85Velocity (ft/s) = 4.54Wetted Perim (ft) = 36.24Crit Depth, Yc (ft) = 2.18 Top Width (ft) = 35.52EGL (ft) = 3.26

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-1.3 (TW=42FT)


Trapezoidal

Bottom Width (ft) = 10.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 4.00 Invert Elev (ft) = 1394.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 263.00 Highlighted

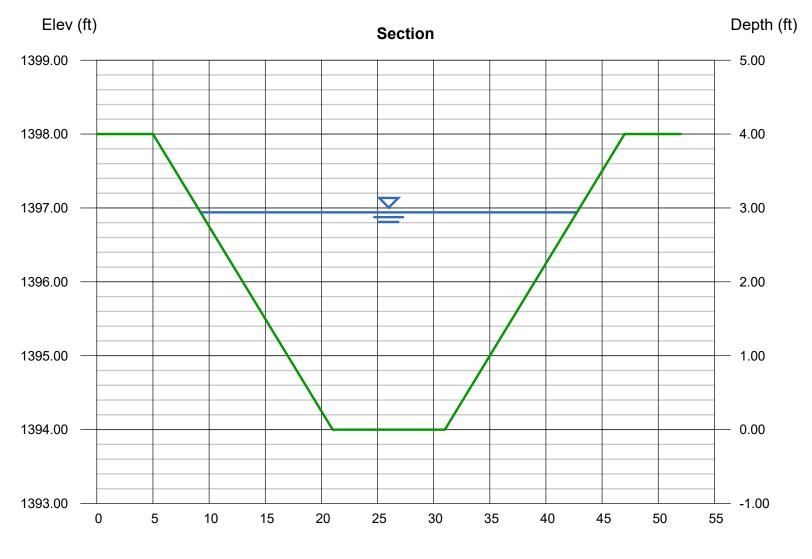
= 2.83Depth (ft) Q (cfs) = 263.00Area (sqft) = 60.34Velocity (ft/s) = 4.36Wetted Perim (ft) = 33.34Crit Depth, Yc (ft) = 2.10 Top Width (ft) = 32.64EGL (ft) = 3.13

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-1.4 (TW=42FT)

Trapezoida	١٤
------------	----


Bottom Width (ft) = 10.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 4.00 Invert Elev (ft) = 1394.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 284.00

Highlighted

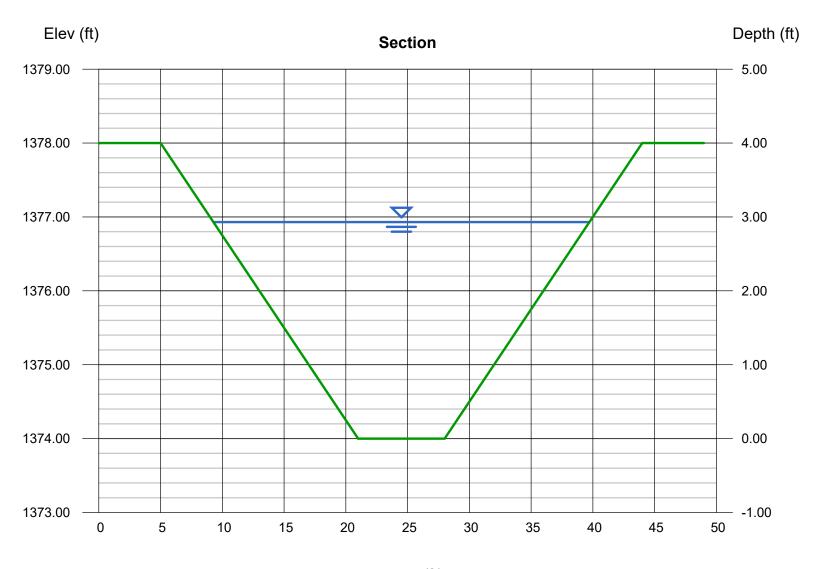
= 2.94Depth (ft) Q (cfs) = 284.00= 63.97Area (sqft) Velocity (ft/s) = 4.44 Wetted Perim (ft) = 34.24Crit Depth, Yc (ft) = 2.19 Top Width (ft) = 33.52EGL (ft) = 3.25

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-2-INT (TW=39FT) INTERIM


Trapezoidal

Bottom Width (ft) = 7.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 4.00
Invert Elev (ft) = 1374.00
Slope (%) = 0.40
N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 234.00 Highlighted

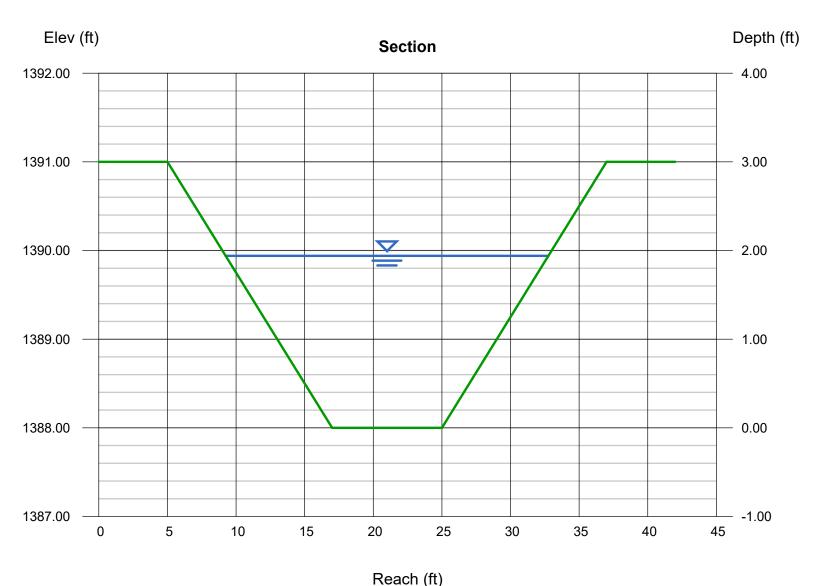
= 2.93Depth (ft) Q (cfs) = 234.00Area (sqft) = 54.85Velocity (ft/s) = 4.27Wetted Perim (ft) = 31.16Crit Depth, Yc (ft) = 2.20Top Width (ft) = 30.44EGL (ft) = 3.21

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-3 (TW=32FT)


Trapezoidal

Bottom Width (ft) = 8.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 1388.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 105.00 Highlighted

Depth (ft) = 1.94Q (cfs) = 105.00Area (sqft) = 30.57Velocity (ft/s) = 3.43Wetted Perim (ft) = 24.00Crit Depth, Yc (ft) = 1.39Top Width (ft) = 23.52EGL (ft) = 2.12

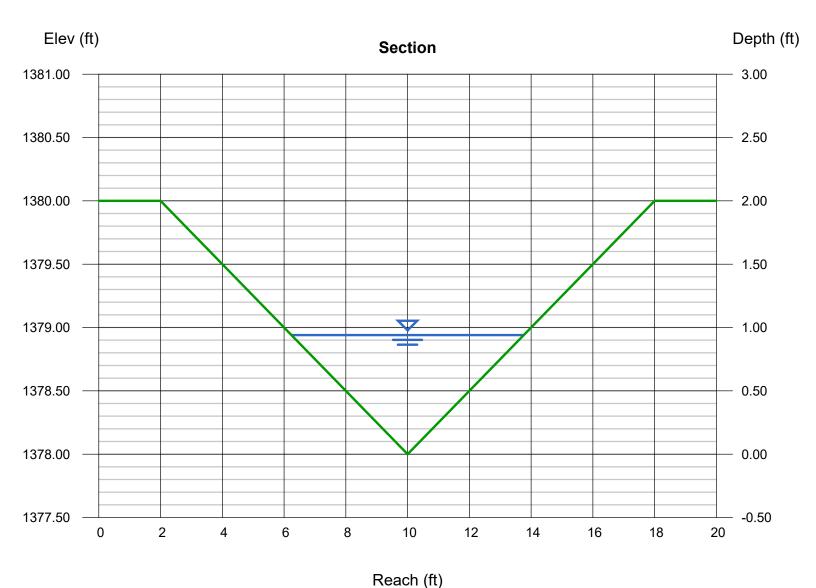
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-4.1 (TW=16FT)

T	r	ia	n	g	u	ar	'

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1378.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 6.00

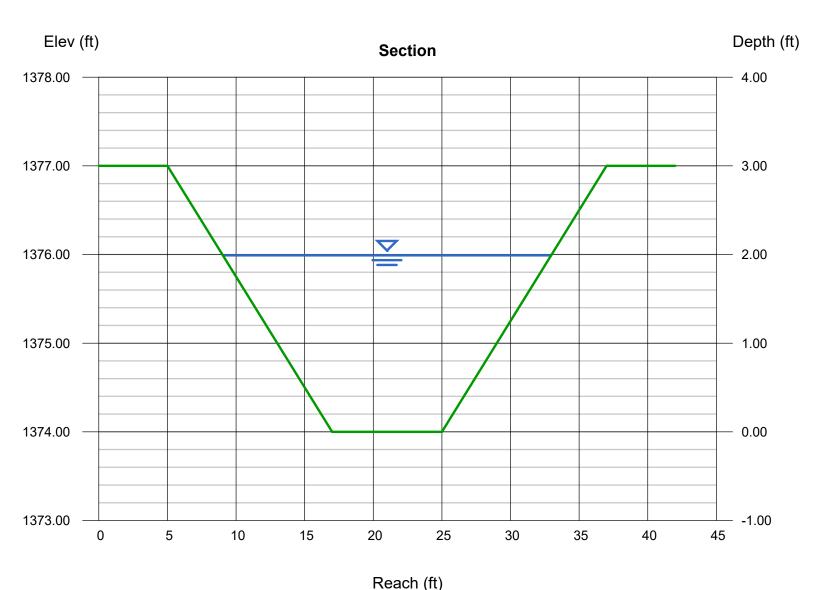
Highlighted

Depth (ft) = 0.94Q (cfs) = 6.000Area (sqft) = 3.53Velocity (ft/s) = 1.70 Wetted Perim (ft) = 7.75Crit Depth, Yc (ft) = 0.68Top Width (ft) = 7.52EGL (ft) = 0.98

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-4.2 (TW=32FT)


Trapezoidal

Bottom Width (ft) = 8.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 1374.00 Slope (%) = 0.40 N-Value = 0.032

Calculations

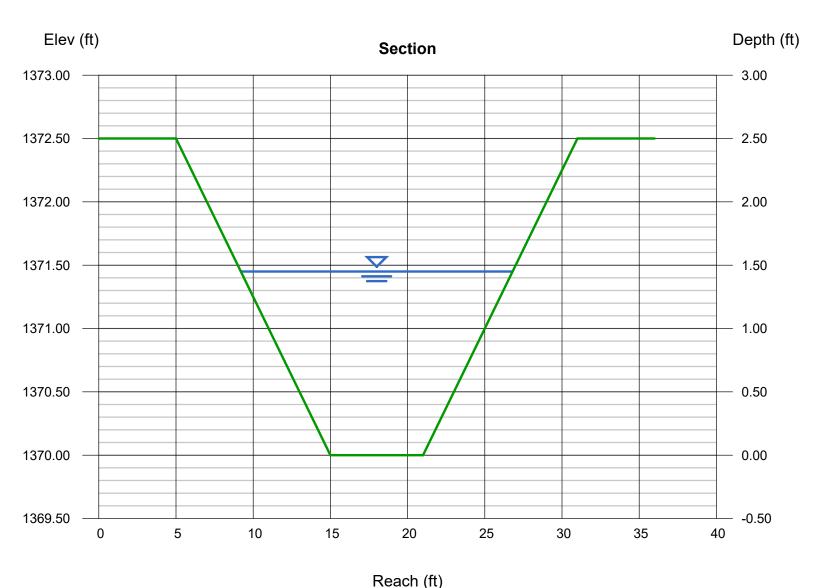
Compute by: Known Q Known Q (cfs) = 111.00 Highlighted

= 1.99Depth (ft) Q (cfs) = 111.00 Area (sqft) = 31.76Velocity (ft/s) = 3.49Wetted Perim (ft) = 24.41Crit Depth, Yc (ft) = 1.43Top Width (ft) = 23.92EGL (ft) = 2.18

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-4-INT (TW=26FT) INTERIM


Trapezoidal

Bottom Width (ft) = 6.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.50 Invert Elev (ft) = 1370.00 Slope (%) = 0.33 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 44.00 Highlighted

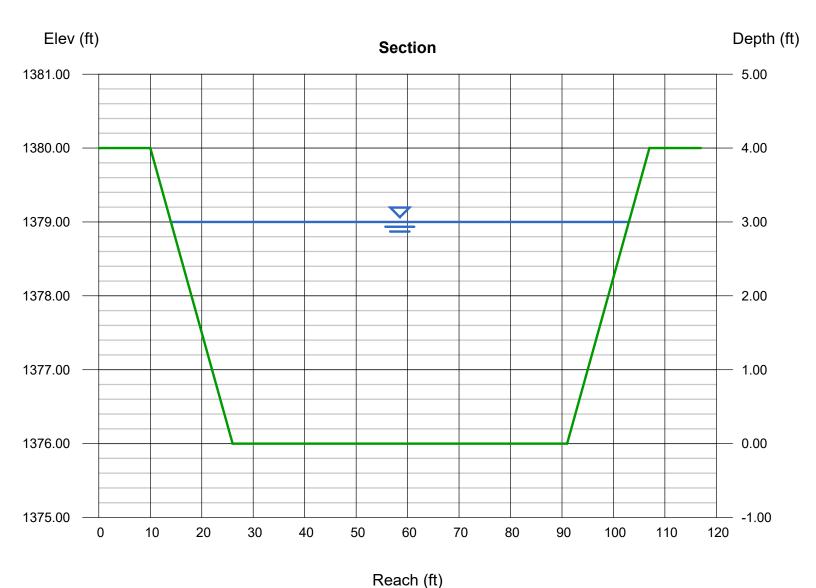
Depth (ft) = 1.45Q (cfs) = 44.00Area (sqft) = 17.11Velocity (ft/s) = 2.57 Wetted Perim (ft) = 17.96Crit Depth, Yc (ft) = 0.96Top Width (ft) = 17.60EGL (ft) = 1.55

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

C-5 (TW=97FT)

Trapezoidal


Bottom Width (ft) = 65.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 4.00 Invert Elev (ft) = 1376.00 Slope (%) = 0.30 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 1100.00

Highlighted

Depth (ft) = 3.00Q (cfs) = 1,100Area (sqft) = 231.00Velocity (ft/s) = 4.76Wetted Perim (ft) = 89.74Crit Depth, Yc (ft) = 1.99Top Width (ft) = 89.00 EGL (ft) = 3.35

CULVERT SUMMARY

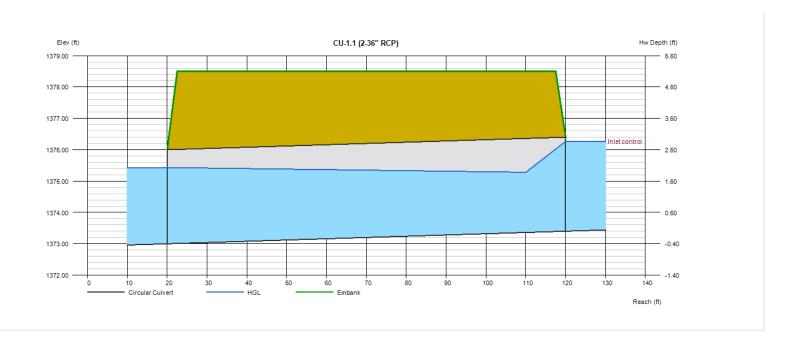
Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

Culvert ID	Model Q ⁽¹⁾ [cfs]	Quantity	Culvert Type
CU-1.1	66	2	36" RCP
CU-1.4	284	2	10'x4' RCBC
CU-3	105	3	36" RCP
CU-4.1	6	1	18" RCP
CU-4.2	111	3	36" RCP
CU-5	1,100	6	10'x4' RCBC
CU-2-INT	234	2	10'x4' RCBC
CU-3-INT	203	6	36" RCP

Notes:


(1) Model Q referneced from calculated Rational Method peak flow.

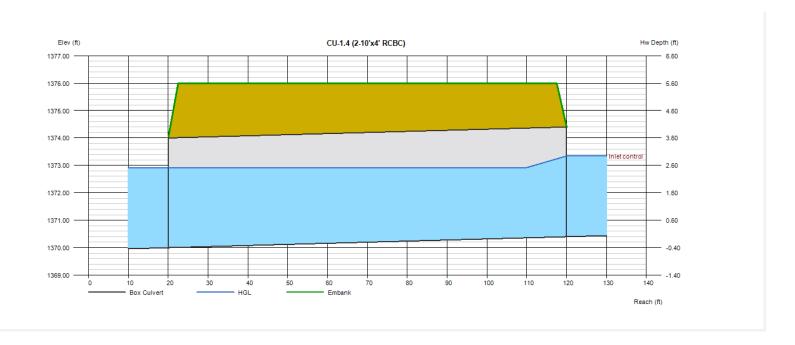
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-1.1 (2-36" RCP)

Invert Elev Dn (ft)	= 1373.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 66.00
Slope (%)	= 0.40	Qmax (cfs)	= 66.00
Invert Elev Up (ft)	= 1373.40	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 66.00
No. Barrels	= 2	Qpipe (cfs)	= 66.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.38
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.15
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1375.43
		HGL Up (ft)	= 1375.26
Embankment		Hw Elev (ft)	= 1376.27
Top Elevation (ft)	= 1378.50	Hw/D (ft)	= 0.96
Top Width (ft)	= 95.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 95.00		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

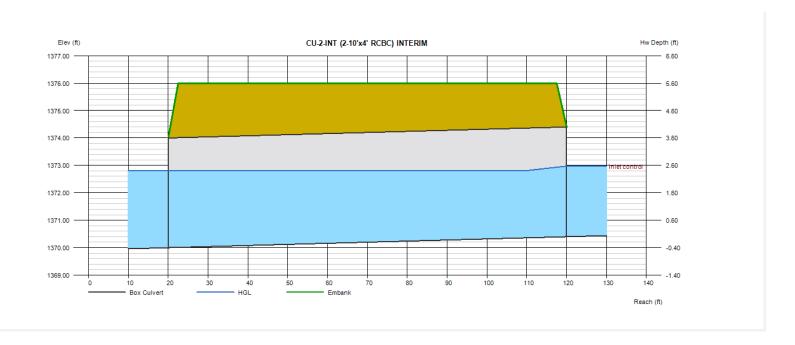

= 95.00

Wednesday, Oct 9 2019

CU-1.4 (2-10'x4' RCBC)

Crest Width (ft)

= 1370.00	Calculations	
= 100.00	Qmin (cfs)	= 284.00
= 0.40	Qmax (cfs)	= 284.00
= 1370.40	Tailwater Elev (ft)	= (dc+D)/2
= 48.0		
= Box	Highlighted	
= 120.0	Qtotal (cfs)	= 284.00
= 2	Qpipe (cfs)	= 284.00
= 0.012	Qovertop (cfs)	= 0.00
= Flared Wingwalls	Veloc Dn (ft/s)	= 4.86
= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 5.63
= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 1372.92
	HGL Up (ft)	= 1372.92
	Hw Elev (ft)	= 1373.34
= 1376.00	Hw/D (ft)	= 0.74
= 95.00	Flow Regime	= Inlet Control
	= 100.00 = 0.40 = 1370.40 = 48.0 = Box = 120.0 = 2 = 0.012 = Flared Wingwalls = 30D to 75D wingwall flares = 0.026, 1, 0.0347, 0.81, 0.4	= 100.00 Qmin (cfs) = 0.40 Qmax (cfs) = 1370.40 Tailwater Elev (ft) = 48.0 = Box Highlighted = 120.0 Qtotal (cfs) = 2 Qpipe (cfs) = 0.012 Qovertop (cfs) = Flared Wingwalls Veloc Dn (ft/s) = 30D to 75D wingwall flares Veloc Up (ft/s) = 0.026, 1, 0.0347, 0.81, 0.4 HGL Dn (ft) HGL Up (ft) HWElev (ft) Hw/D (ft)

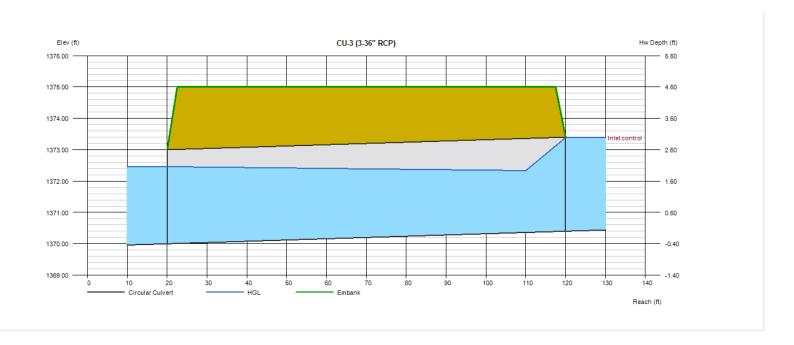


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-2-INT (2-10'x4' RCBC) INTERIM

Invert Elev Dn (ft)	= 1370.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 234.00
Slope (%)	= 0.40	Qmax (cfs)	= 234.00
Invert Elev Up (ft)	= 1370.40	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Box	Highlighted	
Span (in)	= 120.0	Qtotal (cfs)	= 234.00
No. Barrels	= 2	Qpipe (cfs)	= 234.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 4.16
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 4.85
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 1372.81
		HGL Up (ft)	= 1372.81
Embankment		Hw Elev (ft)	= 1372.98
Top Elevation (ft)	= 1376.00	Hw/D (ft)	= 0.64
Top Width (ft)	= 95.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 95.00		

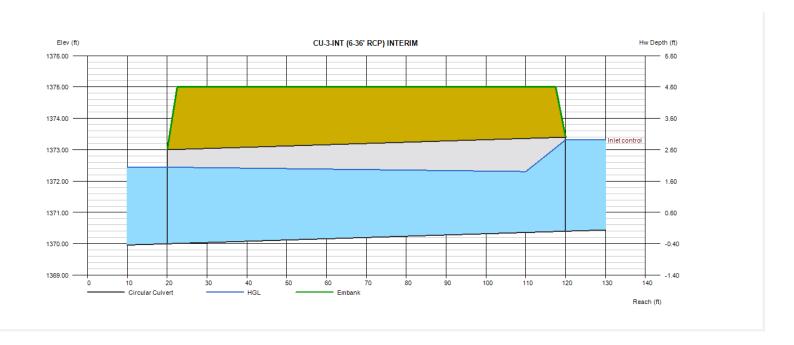


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-3 (3-36" RCP)

Invert Elev Dn (ft)	= 1370.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 105.00
Slope (%)	= 0.40	Qmax (cfs)	= 105.00
Invert Elev Up (ft)	= 1370.40	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 105.00
No. Barrels	= 3	Qpipe (cfs)	= 105.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 5.64
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.32
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1372.46
		HGL Up (ft)	= 1372.32
Embankment		Hw Elev (ft)	= 1373.39
Top Elevation (ft)	= 1375.00	Hw/D (ft)	= 1.00
Top Width (ft)	= 95.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 95.00		

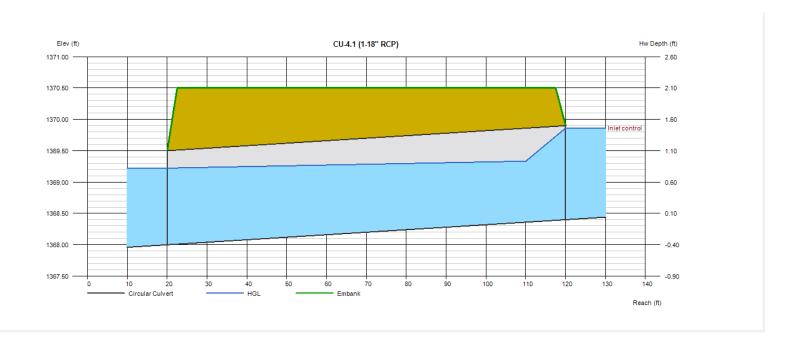


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-3-INT (6-36' RCP) INTERIM

Invert Elev Dn (ft)	= 1370.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 101.50
Slope (%)	= 0.40	Qmax (cfs)	= 101.50
Invert Elev Up (ft)	= 1370.40	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 101.50
No. Barrels	= 3	Qpipe (cfs)	= 101.50
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 5.49
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.22
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1372.44
		HGL Up (ft)	= 1372.29
Embankment		Hw Elev (ft)	= 1373.32
Top Elevation (ft)	= 1375.00	Hw/D (ft)	= 0.97
Top Width (ft)	= 95.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 95.00		

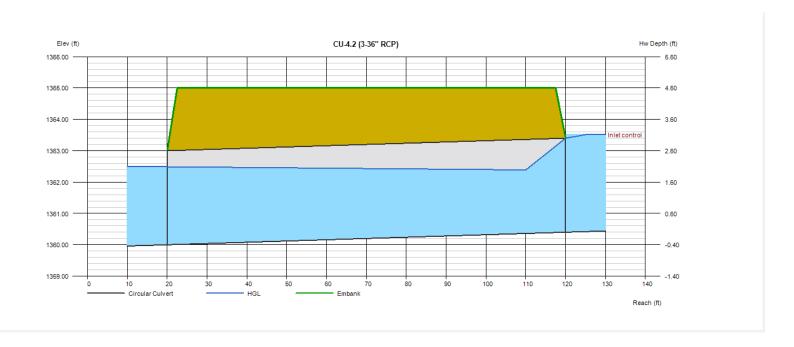


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-4.1 (1-18" RCP)

Invert Elev Dn (ft)	= 1368.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 6.00
Slope (%)	= 0.40	Qmax (cfs)	= 6.00
Invert Elev Up (ft)	= 1368.40	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0	. ,	, ,
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.00
No. Barrels	= 1	Qpipe (cfs)	= 6.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.89
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.12
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1369.22
		HGL Up (ft)	= 1369.35
Embankment		Hw Elev (ft)	= 1369.86
Top Elevation (ft)	= 1370.50	Hw/D (ft)	= 0.97
Top Width (ft)	= 95.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 95.00	-	



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 9 2019

CU-4.2 (3-36" RCP)

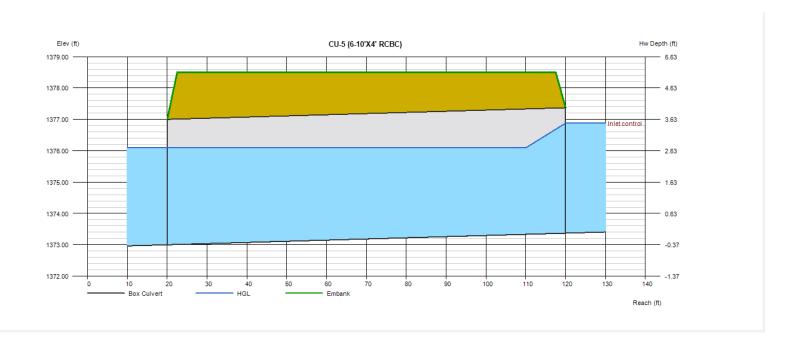
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 1360.00 = 100.00 = 0.40 = 1360.40	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 111.00 = 111.00 = (dc+D)/2
Rise (in) Shape	= 36.0 = Circular	Highlighted	
Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k	= 36.0 = 3 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5	Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft)	= 111.00 = 111.00 = 0.00 = 5.90 = 7.49 = 1362.49
Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft)	= 1365.00 = 95.00 = 95.00	HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime	= 1362.38 = 1363.51 = 1.04 = Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 95.00

= 95.00

Wednesday, Oct 9 2019


= Inlet Control

CU-5 (6-10'X4' RCBC)

Top Width (ft)

Crest Width (ft)

= 1373.00 = 100.00 = 0.37 = 1373.37 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 550.00 = 550.00 = (dc+D)/2
= Box	Highlighted	
= 120.0	-	= 550.00
= 3	, ,	= 550.00
= 0.012	Qovertop (cfs)	= 0.00
= Flared Wingwalls	Veloc Dn (ft/s)	= 5.93
= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 6.73
= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 1376.09
	HGL Up (ft)	= 1376.09
	Hw Elev (ft)	= 1376.88
= 1378.50	Hw/D (ft)	= 0.88
	= 100.00 = 0.37 = 1373.37 = 48.0 = Box = 120.0 = 3 = 0.012 = Flared Wingwalls = 30D to 75D wingwall flares = 0.026, 1, 0.0347, 0.81, 0.4	= 100.00 Qmin (cfs) = 0.37 Qmax (cfs) = 1373.37 Tailwater Elev (ft) = 48.0 = Box Highlighted = 120.0 Qtotal (cfs) = 3 Qpipe (cfs) = 0.012 Qovertop (cfs) = Flared Wingwalls Veloc Dn (ft/s) = 30D to 75D wingwall flares = 0.026, 1, 0.0347, 0.81, 0.4 HGL Dn (ft) HGL Up (ft) HW Elev (ft)

Flow Regime

APPENDIX E PRELIMINARY RETENTION CALCULATIONS

DRAINAGE SUBAREA SUMMARY TABLE

Project: Hawes Crossing

 Prepared by:
 BB

 Date:
 Oct, 2019

		I			ı	and Use Category	1					
Drainage Subarea ID(s)	Concentration Point	Medium Density Residential	Medium/High Density Residential	Urban Density Residential	Urban/ Mixed Use	Technology/ Mixed Use	Commercial	Office	Park/Open Space	Undeveloped Desert	Total Area	Total Area
		[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ac]
ONSITE DRAINAGE AREAS	D.44	938,453	0	0	0	0	0	0	0	0	938,453	21.5
A-1 A-2	R-A1 R-A2	938,453 641,582	0	0	0	0	0	0	0	0	938,453 641,582	21.5 14.7
A-3	R-A3	3,345,498	0	0	0	0	0	0	0	0	3,345,498	76.8
A-4	R-A4	882,719	0	0	0	0	0	0	0	0	882,719	20.3
A-5	R-A5	846,307	0	0	0	0	0	0	0	0	846,307	19.4
B-1	R-B1	0	355,731	0	0	0	0	0	0	0	355,731	8.2
B-2 B-3	R-B2 R-B3	0	357,122 452,704	0	0	0	0	0	0	0	357,122 452,704	8.2 10.4
B-3 B-4	R-B3 R-B4	0	452,704 372,408	0	0	0	0	0	0	0	372,408	8.5
B-5	R-B5	0	374,794	0	0	0	0	0	0	0	374,794	8.6
B-6	R-B6	0	462,018	0	0	0	0	0	0	0	462,018	10.6
B-7	R-B7	0	291,432	0	0	0	0	0	0	0	291,432	6.7
B-8	R-B8	0	296,335	0	0	0	0	0	0	0	296,335	6.8
B-9 B-10	R-B9 R-B10	0	304,135 332,707	0	0	0	0	0	0	0	304,135 332,707	7.0 7.6
B-10	R-B11	0	385,484	0	0	0	0	0	0	0	385,484	8.8
B-12	R-B12	0	420,596	0	0	0	0	0	0	0	420,596	9.7
B-13	R-B13	0	365,255	0	0	0	0	0	0	0	365,255	8.4
B-14	R-B14	0	404,721	0	0	0	0	0	0	0	404,721	9.3
B-15	R-B15	0	969,838	0	0	0	0	0	0	0	969,838	22.3
B-16 B-17	R-B16 R-B17	0	356,271 356,530	0	0	0	0	0	0	0	356,271 356,530	8.2 8.2
B-17	R-B18	0	382,251	0	0	0	0	0	0	0	382,251	8.8
B-19	R-B19	0	393,199	0	0	0	0	0	0	0	393,199	9.0
B-20	R-B20	0	396,145	0	0	0	0	0	0	0	396,145	9.1
B-21	R-B21	0	817,291	0	0	0	0	0	0	0	817,291	18.8
B-22	R-B22	0	738,659	0	0	0	0	0	0	0	738,659	17.0
B-23 B-24	R-B23 R-B24	0	534,440 529,576	0	0	0	0	0	0	0	534,440 529,576	12.3 12.2
B-24	R-B25	0	1,474,408	0	0	0	0	0	0	0	1,474,408	33.8
C-1	R-C1	0	0	406,355	0	0	0	0	0	0	406,355	9.3
C-2	R-C2	0	0	734,601	0	0	0	0	0	0	734,601	16.9
C-3	R-C3	0	0	315,356	0	0	0	0	0	0	315,356	7.2
C-4	R-C4	0	0	349,438	0	0	0	0	0	0	349,438	8.0
C-5 C-6	R-C5	0	0	356,704 356,742	0	0	0	0	0	0	356,704 356,742	8.2 8.2
D-1	R-C6 R-D1	0	0	0	467,361	0	0	0	0	0	467,361	10.7
D-2	R-D2	0	0	0	925,262	0	0	0	0	0	925,262	21.2
D-3	R-D3	0	0	0	1,051,542	0	0	0	0	0	1,051,542	24.1
D-4	R-D4	0	0	0	602,967	0	0	0	0	0	602,967	13.8
D-5	R-D5	0	0	0	575,820	0	0	0	0	0	575,820	13.2
D-6	R-D6	0	0	0	498,833	0	0	0	0	0	498,833	11.5
D-7 D-8	R-D7 R-D8	0	0	0	1,070,025 1,426,698	0	0	0	0	0	1,070,025 1,426,698	24.6 32.8
D-9	R-D9	0	0	0	723,465	0	0	0	0	0	723,465	16.6
D-10	R-D10	0	0	0	549,084	0	0	0	0	0	549,084	12.6
D-11	R-D11	0	0	0	802,568	0	0	0	0	0	802,568	18.4
E-1	R-D12	0	0	0	0	3,206,010	0	0	0	0	3,206,010	73.6
E-2	R-D13	0	0	0	0	2,140,971 33,033	0	0	0	0	2,140,971 33,033	49.1 0.8
E-3 E-4	R-D14 R-D15	0	0	0	0	176,907	0	0	0	0	176,907	4.1
E-5	R-D16	0	0	0	0	695,155	0	0	0	0	695,155	16.0
E-6	R-D17	0	0	0	0	724,502	0	0	0	0	724,502	16.6
E-7	R-D18	0	0	0	0	724,034	0	0	0	0	724,034	16.6
E-8	R-D19	0	0	0	0	1,498,812	0	0	0	0	1,498,812	34.4
E-9 F-1	R-D20 R-D21	0	0	0	0	1,113,971	0 965,430	0	0	0	1,113,971 965,430	25.6 22.2
F-1 F-2	R-D21 R-D22	0	0	0	0	0	965,430 895,691	0	0	0	965,430 895,691	20.6
F-3	R-D23	0	0	0	0	0	987,955	0	0	0	987,955	22.7
F-4	R-D24	0	0	0	0	0	1,090,927	0	0	0	1,090,927	25.0
F-5	R-D25	0	0	0	0	0	755,729	0	0	0	755,729	17.3
F-6	R-D26	0	0	0	0	0	1,136,279	0	0	0	1,136,279	26.1
F-7	R-D27	0	0	0	0	0	833,629	0	0	0	833,629	19.1 15.9
F-8 G-1	R-D28 R-D29	0	0	0	0	0	694,383	385,567	0	0	694,383 385,567	15.9 8.9
P-1	R-D30	0	0	0	0	0	0	0	170,110	0	170,110	3.9
P-2	R-D31	0	0	0	0	0	0	0	78,595	0	78,595	1.8
P-3	R-D32	0	0	0	0	0	0	0	333,706	0	333,706	7.7
P-4	R-D33	0	0	0	0	0	0	0	42,949	0	42,949	1.0
P-5	R-P5	0	0	0	0	0	0	0	84,686	0	84,686	1.9
P-6	R-P6	0 6 654 550	12 124 050	0 2 510 105	0	0	7 360 024	0 295 547	540,744 1 250 701	0 0	540,744	12.4
IOIAL		6,654,559	12,124,050	2,519,195	8,693,626	10,313,396	7,360,024	385,567	1,250,791	U	49,301,208	1131.8

WEIGHTED RUNOFF COEFFICIENT CALCULATIONS

 Project:
 Hawes Crossing

 Prepared by:
 BB

 Date:
 Oct, 2019

Land Use ⁽¹⁾	Land Use Code	C Coefficient
Medium Density Residential	А	0.75
Medium/High Density Residential	В	0.80
Urban Density Residential	С	0.85
Urban/ Mixed Use ⁽²⁾	D	0.80
Technology/ Mixed Use	E	0.90
Commercial	F	0.90
Office	G	0.90
Park/Open Space	Р	0.65
Undeveloped Desert		0.50

NOTES:

(1) From Table 6.3 of the FCDMC Drainage Policies and Standards, Arizona (August, 2018)

(2) Assumes average of Urban and Commercial density coefficients

		Subarea Surface Types & Areas											
Drainage Subarea ID(s)	Concentration Point	Medium Density Residential	Medium/High Density Residential	Urban Density Residential	Urban/ Mixed Use	Technology/ Mixed Use	Commercial	Office	Park/Open Space	Undeveloped Desert	Total	Total	Weighted C Coefficient
		[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ac]	C _w - 100 Year
ONSITE DRAINAGE AREAS													
A-1	R-A1	938,453	0	0	0	0	0	0	0	0	938,453	21.5	0.75
A-2	R-A2	641,582	0	0	0	0	0	0	0	0	641,582	14.7	0.75
A-3	R-A3	3,345,498	0	0	0	0	0	0	0	0	3,345,498	76.8	0.75
A-4	R-A4	882,719	0	0	0	0	0	0	0	0	882,719	20.3	0.75
A-5	R-A5	846,307	0	0	0	0	0	0	0	0	846,307	19.4	0.75
B-1	R-B1	0	355,731	0	0	0	0	0	0	0	355,731	8.2	0.80
B-2	R-B2	0	357,122	0	0	0	0	0	0	0	357,122	8.2	0.80
B-3	R-B3	0	452,704	0	0	0	0	0	0	0	452,704	10.4	0.80
B-4	R-B4	0	372,408	0	0	0	0	0	0	0	372,408	8.5	0.80
B-5	R-B5	0	374,794	0	0	0	0	0	0	0	374,794	8.6	0.80
B-6	R-B6	0	462,018	0	0	0	0	0	0	0	462,018	10.6	0.80
B-7	R-B7	0	291,432	0	0	0	0	0	0	0	291,432	6.7	0.80
B-8	R-B8	0	296,335	0	0	0	0	0	0	0	296,335	6.8	0.80
B-9	R-B9	0	304,135	0	0	0	0	0	0	0	304,135	7.0	0.80
B-10	R-B10	0	332,707	0	0	0	0	0	0	0	332,707	7.6	0.80
B-11	R-B11	0	385,484	0	0	0	0	0	0	0	385,484	8.8	0.80
B-12	R-B12	0	420,596	0	0	0	0	0	0	0	420,596	9.7	0.80
B-13	R-B13	0	365,255	0	0	0	0	0	0	0	365,255	8.4	0.80
B-14	R-B14	0	404,721	0	0	0	0	0	0	0	404,721	9.3	0.80
B-15	R-B15	0	969,838	0	0	0	0	0	0	0	969,838	22.3	0.80
B-16	R-B16	0	356,271	0	0	0	0	0	0	0	356,271	8.2	0.80
B-17	R-B17	0	356,530	0	0	0	0	0	0	0	356,530	8.2	0.80
B-18	R-B18	0	382,251	0	0	0	0	0	0	0	382,251	8.8	0.80
B-19	R-B19	0	393,199	0	0	0	0	0	0	0	393,199	9.0	0.80
B-20	R-B20	0	396,145	0	0	0	0	0	0	0	396,145	9.1	0.80
B-21	R-B21	0	817,291	0	0	0	0	0	0	0	817,291	18.8	0.80
B-22	R-B22	0	738,659	0	0	0	0	0	0	0	738,659	17.0	0.80
B-23	R-B23	0	534,440	0	0	0	0	0	0	0	534,440	12.3	0.80

			Subarea Surface Types & Areas										Weighted C
	Concentration Point	Medium Density Residential	Medium/High Density Residential	Urban Density Residential	Urban/ Mixed Use	Technology/ Mixed Use	Commercial	Office	Park/Open Space	Undeveloped Desert	Total	Total	Coefficient
		[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ft²]	[ac]	C _w - 100 Year
B-24	R-B24	0	529,576	0	0	0	0	0	0	0	529,576	12.2	0.80
B-25	R-B25	0	1,474,408	0	0	0	0	0	0	0	1,474,408	33.8	0.80
C-1	R-C1	0	0	406,355	0	0	0	0	0	0	406,355	9.3	0.85
C-2	R-C2	0	0	734,601	0	0	0	0	0	0	734,601	16.9	0.85
C-3	R-C3	0	0	315,356	0	0	0	0	0	0	315,356	7.2	0.85
C-4	R-C4	0	0	349,438	0	0	0	0	0	0	349,438	8.0	0.85
C-5	R-C5	0	0	356,704	0	0	0	0	0	0	356,704	8.2	0.85
C-6	R-C6	0	0	356,742	0	0	0	0	0	0	356,742	8.2	0.85
D-1	R-D1	0	0	0	467,361	0	0	0	0	0	467,361	10.7	0.80
D-2	R-D2	0	0	0	925,262	0	0	0	0	0	925,262	21.2	0.80
D-3	R-D3	0	0	0	1,051,542	0	0	0	0	0	1,051,542	24.1	0.80
D-4	R-D4	0	0	0	602,967	0	0	0	0	0	602,967	13.8	0.80
D-5	R-D5	0	0	0	575,820	0	0	0	0	0	575,820	13.2	0.80
D-6	R-D6	0	0	0	498,833	0	0	0	0	0	498,833	11.5	0.80
D-7	R-D7	0	0	0	1,070,025	0	0	0	0	0	1,070,025	24.6	0.80
D-8	R-D8	0	0	0	1,426,698	0	0	0	0	0	1,426,698	32.8	0.80
D-9	R-D9	0	0	0	723,465	0	0	0	0	0	723,465	16.6	0.80
D-10	R-D10	0	0	0	549,084	0	0	0	0	0	549,084	12.6	0.80
D-11	R-D11	0	0	0	802,568	0	0	0	0	0	802,568	18.4	0.80
E-1	R-D12	0	0	0	0	3,206,010	0	0	0	0	3,206,010	73.6	0.90
E-2	R-D13	0	0	0	0	2,140,971	0	0	0	0	2,140,971	49.1	0.90
E-3	R-D14	0	0	0	0	33,033	0	0	0	0	33,033	0.8	0.90
E-4	R-D15	0	0	0	0	176,907	0	0	0	0	176,907	4.1	0.90
E-5	R-D16	0	0	0	0	695,155	0	0	0	0	695,155	16.0	0.90
E-6	R-D17	0	0	0	0	724,502	0	0	0	0	724,502	16.6	0.90
E-7	R-D18	0	0	0	0	724,034	0	0	0	0	724,034	16.6	0.90
E-8	R-D19	0	0	0	0	1,498,812	0	0	0	0	1,498,812	34.4	0.90
E-9	R-D20	0	0	0	0	1,113,971	0	0	0	0	1,113,971	25.6	0.90
F-1	R-D21	0	0	0	0	0	965,430	0	0	0	965,430	22.2	0.90
F-2	R-D22	0	0	0	0	0	895,691	0	0	0	895,691	20.6	0.90
F-3	R-D23	0	0	0	0	0	987,955	0	0	0	987,955	22.7	0.90
F-4	R-D24	0	0	0	0	0	1,090,927	0	0	0	1,090,927	25.0	0.90
F-5	R-D25	0	0	0	0	0	755,729	0	0	0	755,729	17.3	0.90
F-6	R-D26	0	0	0	0	0	1,136,279	0	0	0	1,136,279	26.1	0.90
F-7	R-D27	0	0	0	0	0	833,629	0	0	0	833,629	19.1	0.90
F-8	R-D28	0	0	0	0	0	694,383	0	0	0	694,383	15.9	0.90
G-1	R-D29	0	0	0	0	0	0	385,567	0	0	385,567	8.9	0.90
P-1	R-D30	0	0	0	0	0	0	0	170,110	0	170,110	3.9	0.65
P-2	R-D31	0	0	0	0	0	0	0	78,595	0	78,595	1.8	0.65
P-3	R-D32	0	0	0	0	0	0	0	333,706	0	333,706	7.7	0.65
P-4	R-D33	0	0	0	0	0	0	0	42,949	0	42,949	1.0	0.65
P-5	R-P5	0	0	0	0	0	0	0	84,686	0	84,686	1.9	0.65
P-6	R-P6	0	0	0	0	0	0	0	540,744	0	540,744	12.4	0.65
TOTAL		6,654,559	12,124,050	2,519,195	8,693,626	10,313,396	7,360,024	385,567	1,250,791	0	49,301,208	1,131.8	

RETENTION CALCULATION TABLE

Project: Hawes Crossing

Prepared by: BB

Date: Oct, 2019

Retention Basin ID	Drainage Area(s)	Total Area A	Total Area A	Weighted Runoff "C" Coefficient	100-Yr, 2-Hr Volume Required	100-Yr, 2-Hr Volume Required
	[ft ²] [ac]			[ft ³]	[ac-ft]	
R-A1	A-1	938,453	21.5	0.75	127,278	2.9
R-A2	A-2	641,582	14.7	0.75	87,015	2.0
R-A3	A-3	3,345,498	76.8	0.75	453,733	10.4
R-A4	A-4	882,719	20.3	0.75	119,719	2.7
R-A5	A-5	846,307	19.4	0.75	114,780	2.6
R-B1	B-1	355,731	8.2	0.80	51,462	1.2
R-B2	B-2	357,122	8.2	0.80	51,664	1.2
R-B3	B-3	452,704	10.4	0.80	65,491	1.5
R-B4	B-4	372,408	8.5	0.80	53,875	1.2
R-B5	B-5	374,794	8.6	0.80	54,220	1.2
R-B6	B-6	462,018	10.6	0.80	66,839	1.5
R-B7	B-7	291,432	6.7	0.80	42,160	1.0
R-B8	B-8	296,335	6.8	0.80	42,870	1.0
R-B9	B-9	304,135	7.0	0.80	43,998	1.0
R-B10	B-10	332,707	7.6	0.80	48,132	1.1
R-B11	B-11	385,484	8.8	0.80	55,767	1.3
R-B12	B-12	420,596	9.7	0.80	60,846	1.4
R-B13	B-13	365,255	8.4	0.80	52,840	1.2
R-B14	B-14	404,721	9.3	0.80	58,550	1.3
R-B15	B-15	969,838	22.3	0.80	140,303	3.2
R-B16	B-16	356,271	8.2	0.80	51,541	1.2
R-B17	B-17	356,530	8.2	0.80	51,578	1.2
R-B18	B-18	382,251	8.8	0.80	55,299	1.3
R-B19	B-19	393,199	9.0	0.80	56,883	1.3
R-B20	B-20	396,145	9.1	0.80	57,309	1.3
R-B21	B-21	817,291	18.8	0.80	118,235	2.7
R-B22	B-22	738,659	17.0	0.80	106,859	2.5
R-B23	B-23	534,440	12.3	0.80	77,316	1.8
R-B24	B-24	529,576	12.2	0.80	76,612	1.8
R-B25	B-25	1,474,408	33.8	0.80	213,298	4.9
R-C1	C-1	406,355	9.3	0.85	62,460	1.4
R-C2	C-2	734,601	16.9	0.85	112,914	2.6
R-C3	C-3	315,356	7.2	0.85	48,473	1.1
R-C4	C-4	349,438	8.0	0.85	53,712	1.2
R-C5	C-5	356,704	8.2	0.85	54,828	1.3

Retention Basin ID	Drainage Area(s)	Total Area A	Total Area A	Weighted Runoff "C" Coefficient	100-Yr, 2-Hr Volume Required	100-Yr, 2-Hr Volume Required
		[ft²]	[ac]		[ft³]	[ac-ft]
R-C6	C-6	356,742	8.2	0.85	54,834	1.3
R-D1	D-1	467,361	10.7	0.80	67,612	1.6
R-D2	D-2	925,262	21.2	0.80	133,855	3.1
R-D3	D-3	1,051,542	24.1	0.80	152,123	3.5
R-D4	D-4	602,967	13.8	0.80	87,229	2.0
R-D5	D-5	575,820	13.2	0.80	83,302	1.9
R-D6	D-6	498,833	11.5	0.80	72,165	1.7
R-D7	D-7	1,070,025	24.6	0.80	154,797	3.6
R-D8	D-8	1,426,698	32.8	0.80	206,396	4.7
R-D9	D-9	723,465	16.6	0.80	104,661	2.4
R-D10	D-10	549,084	12.6	0.80	79,434	1.8
R-D11	D-11	802,568	18.4	0.80	116,105	2.7
R-D12	E-1	3,206,010	73.6	0.90	521,778	12.0
R-D13	E-2	2,140,971	49.1	0.90	348,443	8.0
R-D14	E-3	33,033	0.8	0.90	5,376	0.1
R-D15	E-4	176,907	4.1	0.90	28,792	0.7
R-D16	E-5	695,155	16.0	0.90	113,137	2.6
R-D17	E-6	724,502	16.6	0.90	117,913	2.7
R-D18	E-7	724,034	16.6	0.90	117,837	2.7
R-D19	E-8	1,498,812	34.4	0.90	243,932	5.6
R-D20	E-9	1,113,971	25.6	0.90	181,299	4.2
R-D21	F-1	965,430	22.2	0.90	157,124	3.6
R-D22	F-2	895,691	20.6	0.90	145,774	3.3
R-D23	F-3	987,955	22.7	0.90	160,790	3.7
R-D24	F-4	1,090,927	25.0	0.90	177,548	4.1
R-D25	F-5	755,729	17.3	0.90	122,995	2.8
R-D26	F-6	1,136,279	26.1	0.90	184,929	4.2
R-D27	F-7	833,629	19.1	0.90	135,673	3.1
R-D28	F-8	694,383	15.9	0.90	113,011	2.6
R-D29	G-1	385,567	8.9	0.90	62,751	1.4
R-D30	P-1	170,110	3.9	0.65	19,995	0.5
R-D31	P-2	78,595	1.8	0.65	9,238	0.2
R-D32	P-3	333,706	7.7	0.65	39,224	0.9
R-D33	P-4	42,949	1.0	0.65	5,048	0.1
R-P5	P-5	84,686	1.9	0.65	9,954	0.2
R-P6	P-6	540,744	12.4	0.65	63,560	1.5
TOTAL	-	49,301,208	1,131.8		7,387,490	169.6